
Multiresolution Tetrahedral Framework
for Visualizing Regular Volume Data

Yong Zhou, Baoquan Chen, and Arie Kaufman�

Center for Visual Computing
and Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract

We present a multiresolution framework, called Multi-Tetra
framework, that approximates volume data with different levels-
of-detail tetrahedra. The framework is generated through a recur-
sive subdivision of the volume data and is represented by binary
trees. Instead of using a certain level of the Multi-Tetra frame-
work for approximation, an error-based model (EBM) is gen-
erated by recursively fusing a sequence of tetrahedra from dif-
ferent levels of the Multi-Tetra framework. The EBM signifi-
cantly reduces the number of voxels required to model an object,
while preserving the original topology. Our approach provides
continuous distribution of rendered intensity or generated isosur-
faces along boundaries of different levels-of-detail, thus solving
the crack problem. Our model supports typical rendering ap-
proaches, such as Marching Cubes, direct volume projection, and
splatting. Experimental results demonstrate the strengths of our
approach.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation – Display Algorithms;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Surface, solid, and object; I.4.10 [Image Processing]:
Image Representation – Hierarchical, Volumetric representations.
Keywords: volume visualization, multiresolution volume, level
of detail, isosurface extraction, volume subdivision, polygon sim-
plification

1 Introduction

Many computer applications routinely generate volumetric mod-
els consisting of large numbers of voxels, which greatly exceed
the capabilities of the typical graphics workstations, not only
in memory requirements, but also in rendering speed. In order
to accommodate complex volume data and accelerate rendering,
methods for approximating the original data set by using a mul-
tiresolution model have been proposed [CDM+94, WV94]. Mul-
tiresolution representation of a volume can be used to generate
multiple volume models at different levels of detail. For a given
precision, display techniques are employed to select and render
certain levels of the model instead of using the original data set.

�Email:fyzhou,baoquan,arig@cs.sunysb.edu

In this paper we propose a new multiresolution tetrahedral
(called Multi-Tetra) framework that can be employed by visu-
alization techniques, such as Marching Cubes [LC87], Polygon
Projection [ST90] and Splatting [LH91], to render regular vol-
ume data. By using the Multi-Tetra framework, a new volume,
i.e., an error-based model with fewer sample points and voxels,
can be established for approximating the original data set. Such a
framework provides an efficient mechanism for continuous level
of detail display. The algorithm has the following features:

� Efficiency: Large reduction in the number of volume ele-
ments with little or no loss in image quality

� Practicality: Different levels of the Multi-Tetra framework
can be represented in a uniform way; it is easy to set up and
index; any level of detail model based on the given error
threshold can be obtained on the fly; furthermore, the model
supports different precisions in different regions

� Versatility: Supports efficient extraction of isosurfaces, di-
rect volume rendering through projective techniques with
adaptive resolution levels, as well as the development of
progressive and multiresolution rendering approaches

� Continuity: Easily solves the problem of crack between
different levels of detail, allowing continuous changes of
sample points density or generated isosurfaces

� Locality: High frequency data regions, such as transitions
between bone and tissue in CT data sets, do not have a
widespread global effect on the complexity of the model

The rest of the paper is organized as follows. After introduc-
ing related work in Section 2, we will discuss our Multi-Tetra
framework (Section 3), including building an embedded and uni-
formly represented multiresolution framework (Section 3.1), an
error-based level of detail model generation (Section 3.2) and ap-
proximation error analysis (Section 3.3). Necessary data struc-
tures and implementation details will also be given in Section
3.2. The experimental results are shown in Section 4.

2 Related Work

There have been a large number of methods proposed to speed up
the visualization process using approximated models. Most are

polygon-based algorithms, i.e., polygonal mesh simplification
methods, which significantly reduce the complexity of polygons
[SZL92, HDD+93]. We are interested in volume data simplifica-
tion rather than that of the graphics output, such as Schroeder’s
decimation of triangle meshes [SZL92].

Several researchers use the octree model to represent volume
data sets, trying to skip empty regions or regions of no interest
[LEV90, WG90]. In a sense, this is the early development of
multiresolution models. In addition, researchers have used the
octree model to approximate volume data in terms of surface con-
struction. Renben’s adaptive Marching Cubes and Raj’s octree-
based decimation are two examples [SZK95, SFY96]. Although
both methods could reach a certain iso-polygon simplification ef-
fect, they suffer from the same crack problem. For connection
on shared boundaries by two adjacent volume elements with dif-
ferent resolutions, they artificially add some patches to retile the
crack - achieving a certain visual smoothness, but geometrically
and topologically unreasonable, since there is no robust theory
to prove it. Actually, the traditional octree model can not support
continuous changes between different levels of detail, as any sub-
division along a cell or subvolume results in a subdivision of an
adjacent element if adjacent continuity must be retained, i.e., the
octree-based model violates the above continuity.

Unlike the octree-based methods, Wilhelms and Van Gelder’s
multi-dimensional tree [WV94] provides spatial and temporal ef-
ficiencies for rendering large data sets. As the authors pointed
out, however, their model does not support continuity between
neighboring regions when they use the projective method to ren-
der volume data. Taosong He et al.’s voxel-based topology sim-
plification algorithm [HHVW96] also provides a simple, robust
and practical multi-resolution volume hierarchy, but it suffers
from the same problem as the multi-dimensional tree does.

Cignoni’s multiresolution modeling [CDM+94] and, espe-
cially, Lindstrom’s height field model [LKR96] are closely re-
lated to our Multi-Tetra framework. The coarsest paradigm of
Cignoni’s is the tetrahedralization of the convex hull of origi-
nal data sets, followed by adding unprocessed nodes one-by-one,
with the greatest error positioned first in the previously generated
model. This process repeats itself until a given precision is met.
This was a good idea, for they adopted tetrahedra as a basic vol-
ume element, appropriate for unstructured data sets. However,
each time a node is added, the related part of the previous model
needs to be tetrahedralized again; the computation is expensive.
They improved the algorithm by preprocessing; the whole model
of different precisions is uniformly embedded in a sequence of
tetrahedra. It supports boundary continuity and versatility, but it
is very difficult to maintain continuous transitions between two
levels.

Lindstrom et al. present excellent work in real time, continu-
ous level of detail rendering of height fields [LKR96]. In terms
of polygonal meshes, their model supports continuity, locality,
practicality. This is, however, a 2D polygon-based algorithm.

Some applications do not require the satisfaction of all the
above properties, and most contemporary volume-based ap-
proaches fail to meet at least one of these properties. How-
ever, a volume-based multiresolution model that supports all of

these features is of great importance in volume visualization.
The Multi-Tetra framework proposed in this paper satisfies all
of the above properties, borrowing some of Cignoni’s ideas - us-
ing tetrahedra as a basic operation element, recursively building
the uniform framework - and meanwhile, extending Lindstrom’s
subdivision mechanism to 3D case.

Our framework is set up based on a recursive partitioning of
the volume domain into tetrahedra. The partitioning operation in-
volves only vertex indices and not the physical coordinates of the
vertices. In addition, the partitioning process does not add any
new sample points, hence, it does not need interpolation for val-
ues of sampling points. It can be represented by a full binary tree
and stored in a linear array, allowing for instant indexing. Unlike
the traditional method [HHVW96] that uses a certain level of de-
tail to approximate the original configuration (so an interpolation
is required for the correspondence between different levels), our
error-based model is obtained by visiting multilevels of tetrahe-
dra according to given precisions. The model allows for smooth
changes in resolution across areas of different levels during the
rendering process, using different precisions in the same frame-
work.

3 Multi-Tetra Framework

The Multi-Tetra framework is a level-of-detail approximation of a
regular data volume. It consists of a set of uniformly represented
and embedded tetrahedra, generated by a recursive subdivision
of the volume. Through fusion operation on the multiresolution
framework, an error-based model – consisting of a subset of non-
embedded tetrahedra extracted from the Multi-Tetra framework
– can be obtained to approximate the volume. In other words, a
simplified model with fewer tetrahedra can be used as a substitute
for speeding up the rendering of the volume data.

In this section, we first discuss the establishment of the mul-
tiresolution framework, followed by the generation of a concrete
model, i.e., an error-based model, to meet given precisions. Es-
sentially, the building process of the framework is the subdivision
of a volume, while the error-based mode generation is a selective
fusion of tetrahedra. The initial input is a regular volume data
set. For the subdivision mechanism, the data set is extended to
dimension(2N + 1)�(2N + 1)�(2N + 1) by padding it with
slices of zero.

3.1 Building the Multi-Tetra Framework

The generation of the Multi-Tetra framework occurs through a
recursive subdivision of the volume data. The subdivision pro-
cess includes initial subdivision and recursive subdivision, start-
ing with the bounding box of the volume. These can be described
as a vertex-adding process. Each step picks up a vertex from
the original volume and puts it into an already generated frame-
work, thus dividing a tetrahedron into two. Each vertex can be
added only once and the subdivision continues until all vertices
are added to the framework.

3.1.1 Initial Subdivision

The initial Multi-Tetra framework is the volumebounding box.
For the sake of the following explanation, imagine that the box
has eight vertices which coincide with the eight corners of the
volume, where the inside is empty. Also, each face of the box
parallels a coordinate plane.

For the initial subdivision, we add the center point of the vol-
ume to the initial framework – the volumebox, and connect it
to all the vertices of the box, forming 6 pyramids. Then we
divide each pyramid into two tetrahedra by connecting the di-
agonal of the base face, generating 12 tetrahedra, such as the
dashed tetrahedron in Fig. 2. It is important to note that each
added vertex has the same index as before. A vertex index is:
i+ j � (2N + 1) + k � (2N + 1) � (2N + 1), where(i; j; k) is
its grid index.

3.1.2 Recursive Subdivision

Next, we recursively subdivide each previously generated tetra-
hedron. Basically, at each step, the recursive subdivision proce-
dure adds the midpoint of an edge of a tetrahedron. The point
added is the one with an index equal to the average of index val-
ues of the two endpoints (i.e., the dotted points in Fig. 2). The
result is that the tetrahedron is bisected into two by the plane
passing through the added point and its opposite edge. At this
point, our subdivision is similar to Hebert’s decomposition for fi-
nite element meshes[HEB94]. In the following, the added points
are called dividing points (DP).

For any generated tetrahedra after the initial subdivision, re-
gardless of how they are recursively bisected in the recursive
subdivision, their configuration must fall into one of three cases
(Fig. 1):

� Case 1: There is only one face parallel to a coordinate plane
and there exists only one edge L of the face NOT parallel to
any coordinate axis

� Case 2: There is only one face parallel to a coordinate plane
and there exists only one edge L of the face parallel to a
coordinate axis

� Case 3: There are only two faces parallel to coordinate
planes (the edge that does not belong to any of these two
faces is denoted by L)

In Fig. 1, for any case, edge AB of tetrahedron ABCD corre-
sponds to edge L. For each different case, the midpoint of corre-
sponding edge L is selected as the dividing point. We refer to the
subdivision of Casen as Stepn (n = 1; 2; 3).

Here is the procedure for the actual subdivision process. Note
that after the initial subdivision, the 12 generated tetrahedra all
belong to Case 1, so we first perform Step 1 subdivision (Fig. 2).
After Step 1, the configuration of newly generated tetrahedra are
in Case 2; then we perform Step 2 and move on to Step 3 subdi-
vision. After the subdivision of Case 3, the tetrahedra configura-
tions recursively return to Case 1. We perform Step 1 subdivision
again if needed.

A

D

BC A
C

B

D

A D

B
C

Case 1 Case 2 Case 3

Figure 1:Generated tetrahedra by the recursive subdivision must
fall into one of the above three cases

As mentioned above , a volume has the dimension of(2N +

1)�(2N +1)�(2N +1). Now assume the simplest case:N = 1

(i.e., for a3�3�3 volume). After the initial and Step 1 and Step
2 subdivisions, all the points of the original volume are added to
the generated framework, and the subdivision ends. IfN = 2

(i.e., for a5�5�5 volume), another three steps – i.e., Step 3,
Step 1, successively followed by Step 2, are required. Generally,
if N = n (n is an arbitrary integer),nSteps 1,n Steps 2 andn�1
Steps 3 are required. The whole subdivision process isillustrated
in Fig. 2; the dashed tetrahedron is one to be considered for next
step subdivision.

Vertex added

Step 1

Step 2

Step 3

To Next Level

Initial Subdivision

Figure 2:The entire subdivision process

The implementation of the recursive subdivision can follow
two ways:breadth priority subdivision(BPS) anddepth priority
subdivision(DPS). BPS means the same subdivision step is im-
plemented for all the tetrahedra in the same level before the next
step is taken, while DPS means the same tetrahedron descends
through all the steps before the other tetrahedra are subdivided.

BPS is a straightforward process; after each BPS step, all the
tetrahedra undergo the same subdivision – a tetrahedron breaks
into two. After one level is finished, the process proceeds to the
next level. No matter which order is taken, when the subdivision
finally stops, each original cell has been divided into six tetrahe-
dra.

Note that during the subdivision, no physical coordinates and
only vertices’ indices are involved. In implementation we store
all intermediate data. The subdivision can be represented by a
full binary tree, easily be stored by an array; each item of the ar-
ray corresponds to a tetrahedron structure. Next, we show how
to employ this framework – the Multi-Tetra framework – to ob-
tain an error-based model approximating the volume within given
precisions.

3.2 Error-Based Model Generation

As we mentioned before, the purpose of the volume-based mul-
tiresolution representation is to approximate the original data set
using fewer elements or tetrahedra. How to find a set of tetrahe-
dra (i.e., an error-based model) from the Multi-Tetra framework
is described next.

According to our Multi-Tetra framework, a set of tetrahedra
in the same level of the binary tree is a brute-force approxima-
tion of the original data sets – the higher the resolution level the
set of tetrahedra comes from, the more precise the approximation
is. Obviously, visiting and visualizing leafnodes is tantamount
to traditional cell-by-cell rendering approaches, except that each
cell is replaced by six tetrahedra. If we can merge tetrahedra,
visiting a relatively small number of elements, the rendering time
will be reduced geometrically in relationship to the degree of re-
duction.

Our approach is a bottom-up tetrahedra fusion, starting with
the highest resolution level, i.e., leaf nodes of the tree, as in
[LH91]. Each fusing operation is limited to two children tetra-
hedra descended from the same parent if the fusion criteria are
met. The result is that two children are replaced by their parent.
The resulting tetrahedra can be considered for further simplifica-
tion in a recursive manner. The fusion continues until the fusion
criteria are violated.

The fusion criteria are based on two factors: one is geomet-
rically an approximation error; the other is a topologically ad-
jacent relationship. Suppose the density of any point within a
tetrahedron can be evaluated by trilinear interpolation of vertex
densities. When two small tetrahedra are replaced by a large one,
the approximation error occurs. There are many ways to evaluate
the error depending on the rendering techniques. For instance,
for isosurface extraction, the isovalue is a parameter of the error
evaluation. In the current implementation, we used the method
for isosurface extraction called Marching Tetrahedra [ZCT95].
The details will be given in Section 3.3.

From another perspective, the fusion can be regarded as the
dividing point (DP) removal. Merging two tetrahedra means to
remove the corresponding DP, and for boundary continuity, the
necessary condition for removing the DP is that all the tetrahedra
pairs with this DP should be qualified for fusion. The question is

how to locate the tetrahedra sharing the same DP so that we can
perform an approximation test.

For the cases generated by different steps, the number of
shared tetrahedra pairs is distinctly different. Since each divid-
ing point is associated with an edge, the tetrahedra pairs sharing
a corresponding edge are what we want. By referring to Fig. 1
again, in each case, the number of tetrahedra sharing edge AB
is our answer. Thus, we have the following results: for Case 1,
the number is 4; Case 2, the number is 8, and for Case 3, it is 6.
Generally, if a dividing point is shared byn pairs of tetrahedra,
it is call n-connected (here suppose the dividing point is inside
the volume, not on the boundaries; in that case,n is relatively
smaller). Thus, for any case, all the dividing points are shared by
limited tetrahedra, meaning the local fusion of tetrahedra does not
have a widespread global effect on the complexity of our model.

For each dividing point we set up a dividing point structure,
which stores the addresses of the tetrahedra sharing the dividing
point and the maximum approximation error. For fusion imple-
mentation, the whole binary tree is represented by an array; each
item of the array corresponds to a node, only storing vertex in-
dices, not addresses of their children’s nodes since the children
addresses can be easily obtained by a simple calculation.

A dividing point table also has to be established with each level
of the trees corresponding to a dividing point chain. Each item
of the chain corresponds to a dividing point structure. The head
pointers to chains are stored in the dividing point table.

Before fusing dividing points, maximum approximation errors
are calculated starting from the highest level in a bottom-to-up or-
der. Instead of checking the nodes in the trees, only the dividing
point table is visited. For each dividing point, the error is taken
as the maximum between the current level error and the error al-
ready stored in the error item from its children. The current level
error is the maximum among the errors of tetrahedra pairs shar-
ing the corresponding dividing point. Once the error evaluation
for a dividing point is completed, its parent’s error needs to be
updated. After all dividing points are processed, we ascend to the
next immediate level. This mechanism guarantees that if divid-
ing point’s children can not be fused, or any one pair of tetrahedra
sharing it can not be fused, current fusion fails.

Once error evaluation is accomplished, an approximate model
can be obtained according to a given precision. The model con-
sists of nodes with their approximation errors less than the er-
ror threshold, while their parents’ error exceeds the threshold.
The model can be displayed by visualization methods. In Section
4, the isosurfaces extracted from the Multi-Tetra framework are
given.

3.3 Error Analysis

We use the Marching Tetrahedra method [ZCT95] for isosurface
extraction. Isosurface patches within a tetrahedron have three
configurations shown in Fig. 3 (disregarding symmetrical cases).
Unlike the Marching Cubes, the Marching Tetrahedra has no am-
biguity in the reconstruction. Now, suppose a tetrahedron is bi-
sected corresponding to edge L. For Cases a and b in Fig. 3, the
subdivision derives Cases a1 and a2, and Cases b1 and b2, re-
spectively, while for Case c different cases are derived, i.e., Cases

c1-c3 (see Fig. 4). For convenience, we assume a point holds a
positive sign if the density exceeds the isosurface threshold; oth-
erwise, it holds a negative sign.

By analyzing all the cases in Fig. 4, we can say the densities of
endpoints of edge L and the dividing point have substantial influ-
ence on the geometric and topological distribution of isosurfaces,
especially when two endpoints hold the same sign, and the divid-
ing point has an opposite sign, such as Case a2, Case b2, Case
c3. In such a situation, the isosurface topology changes after fu-
sion; a large enough error value is returned, meaning no fusion is
allowed.

Case a Case b Case c

+

+

+
+

-

+

+

+ -

-

+

+

Figure 3:Isosurface configurations within a tetrahedron

Case a1 Case a2

Case b1 Case b2

Case c1 Case c2 Case c3

+

-+

-

+ + + +

+

+

+ ++

+

+ +

+

+

+

+
+

+ +

+

-

-

- - -

- - - -

-

+

Figure 4:Isosurface configurations after subdivision of the three
cases in Fig. 3

In other cases, we check the iso-point changes along four seg-
ments which connect the dividing point to four vertices of the
tetrahedra. For a segment, if two endpoints hold different signs,
a change of the position of the iso-point occurs when the divid-
ing point density instead of the average density value of edge L
endpoints is used. The distance of two iso-points can be calcu-
lated as the measure of the change. If two endpoints of a seg-
ment hold the same sign when using either the dividing point
density or the average density, the distance is regarded as zero.
Obviously, if all the segments have the distance value of zero,
no approximation error happens. We take the maximum of all

distance values as the approximation error. The alternative is to
replace the physical distance with the projected distance, result-
ing in a viewpoint-dependent error evaluation. Our experiments
show that taking the physical distance is efficient. It deserves to
be noted that the above error evaluation is based on a prerequisite
– the finest resolution tetrahedra mesh is most accurate, although
its topology and geometry, in a sense, change relative to the orig-
inal data structures, due to our subdivision mechanism.

4 Results

Our algorithm has been implemented in C with OpenGL. Results
were obtained running on an SGI Power Challenge – R10000
CPU, 3GB main memory with Infinite Reality graphics. We ap-
plied the algorithm on two data sets: a voxelized box data and a
medical CT head data set. Table 1 shows the time in seconds for
the subdivision and fusion procedures for each data set. Although
the two data sets have different sizes, both have been extended to
the dimension of129�129�129. Since the subdivision process
is independent of the actual data set values, they hold the same
subdivision time. Based on this observation, the subdivision pro-
cedure can be realized as a preprocess for further simplifying the
run-time calculation. On the other hand, the fusion procedure de-
pends on the complexity of the data set, as most of the time is
spent on error evaluation. The difference in fusion time in Table
1 is the result of a difference in data complexity.

Table 1: Framework subdivision and fusion time (in seconds) for
two data sets

Data Set Resolution Subdivision Fusion
Box 62�127�67 90 19

CT Head 128�128�113 90 55

Fig. 5 shows the relationship between approximation error and
the number of tetrahedra and triangles after the fusion for the
Box and CT Head data sets. The triangles are generated by the
Marching Tetrahedra technique shown in Fig. 3 with the same
isovalue of 55.5 for both data sets.

When the approximation error is zero, that means no fusion oc-
curs, so we get the original representation of the data set. As can
be seen from Fig. 5, once the error is larger than zero, the number
of tetrahedra approximating the original data set are quickly re-
duced. Due to the constraint of adjacent continuity, the fusion
converges to a fixed model as the error increases to a certain
value.

All the images are generated with an isovalue of 55.5. Figs. 6
- 9 correspond to errors: 0.0, 1.5, 2.5 and 4.0 (in voxel size),
respectively. Figs. 10 (a) and (b) (see also color pictures) are
with errors: 0.0 and 4.0, respectively. Fig. 11 (see also color
pictures) is created using different errors: the left part of the head
is specified with an error of zero, while the right part with an error
of 4.0. The smooth change along the boundary of different levels-
of-detail shows one of the advantages of our model. Observing
Figs. 10 (a) and (b), the areas with fewer data changes in

Tetra/Tri(10K)

30/10

90/12

150/14

210/16

270/18

330/20

390/22

450/24

510/26

Error

543210

Tetrahedra-Error
Triangle-Error

(b)

(a)

Tetra/Tri(10K)

10/5

30/7

50/9

70/11

90/13

110/15

130/17

150/19

170/21

Error
1086420

Tetrahedra-Error
Triangle-Error

Figure 5:Approximation error vs. the number of tetrahedra and
triangles: (a) the Box data set, (b) the CT Head data set

Figure 6:The initial isosurface mesh consisting of182,376 trian-
gles extracted from 1,646,568 tetrahedra with error=0

Figure 7: Isosurface mesh consisting of 68,788 triangles ex-
tracted from 138,042 tetrahedra with error=1.5) (i.e., 91.6% fu-
sion of tetrahedra)

Figure 8: Isosurface mesh consisting of 52,194 triangles ex-
tracted from 115,210 tetrahedra with error=2.5) (i.e., 93.0% fu-
sion of tetrahedra)

Figure 9: Isosurface mesh consisting of 51,490 triangles ex-
tracted from 114,556 tetrahedra with error=4.0) (i.e., 93.04%
fusion of tetrahedra)

(a) (b)

Figure 10:(a) Initial isosurface mesh consisting of255,256 triangles extracted from 5,390,896 tetrahedra with error=0, (b) Isosurface
mesh consisting of 89,300 triangles extracted from 304,468 tetrahedra with error=4.0 (i.e., 94.35% fusion of tetrahedra)

(a) (b)

Figure 11:(a) Isosurface mesh consisting of 184,228 triangles extracted from 2,891,024 tetrahedra with head left side error=0 and right side
error=4.0 (i.e., 46.37% fusion of tetrahedra), (b) Zoom-in to the marked region in (a)

Fig. 10 (a) are greatly simplified in Fig. 10 (b), while the regions
of high frequency data remain mostly unchanged.

5 Conclusions

We have presented a volume-based multiresolution tetrahe-
dral framework, the Multi-Tetra framework, and an error-based
model. The framework is characterized by several features: com-
pact representation, easy and fast query. Its most important prop-
erty, differing from traditional algorithms, is that it provides an
efficient mechanism for natural correspondence from one level
to another, rather than the correspondence by interpolation of
different levels in traditional multiresolution methods. Further-
more, the error-based model generated by the recursive fusion
operation on the framework allows smooth, continuous changes
between different levels-of-detail. This means we can display
volume areas of interest by providing different approximation er-
ror thresholds within one image. For example, areas far away
from the viewpoint, or of no interest, can be given loose error
precision. As an application of the Multi-Tetra framework, iso-
surface extraction and error evaluation are discussed. Our method
completely solves the crack problems which exist in traditional
methods. In addition, the framework also provides possibilities
for supporting typical volume rendering algorithms – direct pro-
jection, adaptive and progressive splatting – which are currently
being investigated.

Our approach not only simplifies volume data, but also poly-
gon meshes generated by traditional surface extraction methods.
In other words, simplification of volume directly results in the
simplification of generated polygon meshes.

6 Acknowledgements

This work has been supported by the National Science Founda-
tion under grants CCR-9205047 and MIP-9527694.

References

[CDM+94] P. Cignoni, L. D. Floriani, C. Montoni, E. Puppo,
and R. Scopigno. Multiresolution modeling and vi-
sualization of volume data based on simplicial com-
plexes. 1994 Symposium on Volume Visualization,
ACM SIGGRAPH, pages 19–26, October 1994.

[HDD+93] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-
ald, and W. Stuetzle. Mesh optimization.Com-
puter Graphics (SIGGRAPH’93 Proceedings), vol-
ume 27, pages 19–26, August 1993.

[HEB94] D. J. Hebert. Symbolic local refinement of tetra-
hedral grids. Journal of Symbolic Computation,
volume 17, pages 457–472, 1994.

[HHVW96] T. He, L. Hong, A. Varshney, and S. Wang. Con-
trolled topology simplification.IEEE Transactions
on Visulization and Computer Graphics, volume 2,
No. 2, pages 171–184, 1996.

[LC87] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
Computer Graphics (SIGGRAPH’87 Proceedings),
volume 21, pages 163–169, July 1987.

[LKR96] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes,
N. Faust and G. Turner. Real-time, continuous
level of detail rendering of height fields.Com-
puter Graphics (SIGGRAPH’96 Proceedings), vol-
ume 30, pages 109–118, August 1996.

[LEV90] M. Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics, volume 9, No. 3,
pages 245–261, July 1990.

[LH91] D. Laur and P. Hanrahan. Hierarchical splatting:
A progressive refinement algorithm for volume ren-
dering. Computer Graphics (SIGGRAPH’91 Pro-
ceedings), volume 25, pages 285–288, July 1991.

[SFY96] R. Shekhar, E. Fayyad, R. Yagel and J. F. Cornhill.
Octree-Based Decimation of Marching Cubes Sur-
faces. IEEE Visualization’96, pages 335–342, Oc-
tober 1996.

[ST90] P. Shirley and A. Tuchman. A polygonal approxi-
mation to direct scalar volume rendering.Computer
Graphics (San Diego Workshop on Volume Visual-
ization), volume 24, No. 5, pages 63–70, November
1990.

[SZK95] R. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive
marching cubes.The Visual Computer, volume 11,
No. 4, pages 202–217, 1995.

[SZL92] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.
Decimation of triangle meshes.Computer Graphics
(SIGGRAPH’92 Proceedings), volume 26, pages
65–70, July 1992.

[WG90] J. Wilhelms and A. V. Gelder. Octrees for faster
isosurface generation extended abstract.Computer
Graphics (San Diego Workshop on Volume Visual-
ization), volume 24, No. 5, pages 57–62, November
1990.

[WV94] J. Wilhelms and A. V. Gelder. Multi-dimensional
trees for controlled volume rendering and compres-
sion. 1994 Symposium on Volume Visualization,
ACM SIGGRAPH, pages 27–34, October 1994.

[ZCT95] Y. Zhou, W. Chen, and Z. Tang. An elaborate ambi-
guity detection method for constructing isosurfaces
within tetrahedral meshes.Computers & Graphics,
volume 19, No. 3, pages 355–364, 1995.

