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Abstract

We present a novel two-pass approach for both 2D image and 3D
volume rotation. Each pass is a pseudo shear. However, it has the
similar regularity to a pure shear in that a beam remains rigid. Fur-
thermore, the 3D pseudo shear guarantees that beams within one
major axis slice remain in the same directional plane after the shear-
ing. These properties make it feasible to implement the pseudo
shears on a multi-pipelined hardware or a massively parallel ma-
chine. Compared with the existing decompositions, ours offer a
minimum number of shears to realize an arbitrary 3D rotation. Our
decomposition also preserves the image/volume quality by guaran-
teeing no minification for the first pass shear.

1 INTRODUCTION

Many applications require interactive or even real time manipu-
lation of rasterized data — 2D images or 3D volumes. Among
various affine transformations, rotation is considered as most im-
portant and expensive. Three-dimensional volume transformation
plays a key role in volume modeling and manipulation, registra-
tion of multiple volumes, as well as volume rendering. In a few
volume renderers implemented on parallel distributed memory ma-
chines [6, 14, 18], a volume is first rotated to be aligned to the
image grid and then orthographically projected and composited to
obtain the final image. However, rotation of large data, especially
3D volume data, is very expensive. One immediate challenge is the
memory access bandwidth, because rotation requires global com-
munication and could cause contention while writing data back to
the distributed memory modules. This can be the bottleneck of the
approach. To address this issue, it is usually desirable to decom-
pose the rotation transformation into a sequence of lower dimen-
sional transformations which are much simpler to perform. Shear
transformations, capitalizing on nearest neighbor connections, lend
themselves to a feasible multi-pipelined hardware or parallel im-
plementation. Any hardware with a barrel shifter can be potentially
used to perform efficient shear transformation. Utilizing the neigh-
boring connection, an array of barrel shifter is able to shift an entire
beam of voxels by several units in one shift cycle [3].

There have been a number of decompositions so far. Most of
the decompositions on 3D rotation are straightforward extensions
from 2D decompositions into shears. There are essentially two
kinds of shears used for decompositions: a pure shear or a pseudo
shear. In a pure shear, a row of image/volume (also called abeam
thereafter) is simply shifted. After the shearing, the area/volume of
the image/volume stays the same. In a pseudo shear, a row of im-
age/volume is stretched (or shrunk) when it is shifted. Therefore,
after the shearing, the image/volume is either magnified or minified.

We first introduce decompositions using pure shears. A three-
shear decomposition of a 2D image rotation was introduced inde-
pendently by Paeth [11] and Tanaka et al. [15]. A straightforward
extension of this method to 3D was proposed by Schroeder and

Salem [14], also by Danielsson and Hammerin [4]. From the ini-
tially obtained nine shear decomposition sequence, they managed
to merge two neighboring shears into a single shear, resulting in an
eight-shear decomposition. Schroeder and Salem [4] have imple-
mented the eight-pass rotation on CM-2. The first attempt of di-
rectly performing decomposition on 3D rotation was taken by Wit-
tenbrink and Somani [19] and recently by Toffoli and Quick [16].
In their decompositions, three shears are needed and each shear is
a general shearoperation — first sliding (shearing) volume slices
(a volume plane perpendicular to a major axis) along one another
and then sliding beams within each slice along one another. Witten-
brink and Somani [18] have implemented the three-pass algorithm
on Maspar MP-1 parallel machine. Most recently, the authors have
presented in another paper [2] a group of decomposition methods
for 3D volume rotation. By defining different 2D shears, such as
2D beam-shear, slice-shear, and beam-slice-shear, the decomposi-
tions of four-pass, three-pass algorithms have been derived, using
pure shear as the basic transformation. In this paper, we will use
pseudo shearto conduct the decomposition and further reduce the
number of shears to two, and furthermore the pseudo shears we use
have the most important property of regularity as pure shears.

Using pseudo shear, Catmull and Smith [1] have proposed a two-
pass algorithm to realize a general affine transformation. To serve
as a comparison for our new decompositions, we describe their de-
composition in the following. First, given the rotation angle�, the
rotation matrixR(�) rotates a point(x; y) to (x0; y0) as:

�
x0 y0

�
=
�
x y

� � cos� � sin�
sin� cos�

�
: (1)

Catmull and Smith decompose the rotation matrixR(�) into two
sequences:

R(�) =

�
cos� 0
sin� 1

��
1 � tan�
0 sec�

�

=

�
1 � sin�
0 cos�

��
sec� 0
tan� 1

�
:

(2)

Each pass of a sequence works on a separate raster direction,
where each row (column) of an image is both sheared and scaled.
This shear/scale makes the sampling more complex even though
it is constrained within the beam. Another severe problem is that
memory access becomes irregular because of this scaling, which
prevents it from an efficient parallel implementation. In addition,
this scaling may cause a situation calledbottleneckproblem, where
a beam is first shrunk and then magnified such that the original
beam can not be recovered. Later, Hanrahan [8] generalized the
two-pass image transformation method to a three-pass algorithm
for volume affine transformation, where all three passes separately
work on three raster directions of the volume. This generalization
is significant. However, it inherits the same bottleneck problem. To



solve this problem, re-ordering has to be done so that magnification
always precedes minification. When it comes to 3D, this becomes
non-trivial because there are many cases to permute (36 as pointed
out by Hanrahan) to determine the appropriate order. In this paper,
we introduce a novel two-pass decomposition on both image and
volume rotation using a newly defined pseudo shear. The pseudo
shear that we use shifts a beam in 2D/3D space but does not scale
it, therefore, bears similar regularity of a pure shear. In addition,
our two-pass decomposition can guarantee no shear doing minifi-
cation comes before the second shear so that we can preserve the
image/volume quality.

In the remainder of this paper, we will present our two-pass de-
composition on 2D image rotation (Sec. 2) and then on 3D volume
rotation (Sec. 3). We then introduce a hardware implementation
(Sec. 4) for our pseudo shear, followed by some implementation
results (Sec. 5) and concluding remarks (Sec. 6).

2 TWO-PASS IMAGE ROTATION

Here we propose a new decomposition of the 2D image rotation.
Our decomposition is a two-pass approach. Each pass is a pseudo
shear, namelyX-pseudo shear orY -pseudo shear. AnX-pseudo
shear is defined in Equation 3, which is illustrated in Figure 1. The
dotted line square is sheared to the thick solid line parallelogram
position. There, each horizontal row of the image slides with each
other, and in the mean time, it is scaled in the vertical direction; but
it is not scaled in the horizontal direction. This makes it feasible
for parallel implementation because an image row can be accessed
from the memory in parallel. Similarly, we can define aY -pseudo
shear. As all shears in our decompositions are pseudo shear, we
will simply call X-pseudo shear asX shear andY -pseudo shear as
Y shear. Equation 4 gives out two sequences of decomposition fea-
turing two orders,X shear! Y shear andY shear! X shear. A
favorable property of this decomposition is that the first pass guar-
antees a magnification, because the scaling factor,sec�, for the
first shear isalwaysgreater than one for non-zero degree rotation.
This avoids bottleneck problem automatically.

SHXbeam
=

�
1 0
a b

�
(3)

x

y

Figure 1:2D X-beam shear

R(�) =

�
1 0

tan� sec�

� �
cos� � sin�
0 1

�

=

�
sec� � tan�
0 1

��
1 0

sin� cos�

� (4)

3 TWO-PASS VOLUME ROTATION

The property of our 2D pseudo shear is that one directional beam is
kept uniform, which makes it feasible for parallel implementation
because an image row can be accessed from the memory in parallel.
We strive to preserve this property in 3D pseudo shear when design-
ing the decomposition for 3D rotation. To make the shear even more
regular, we further impose another constrain for a 3D shear: there
is at least one directional plane so that after the shearing, all beams
in that plane stay at the same plane. This maintains the regularity
of the shear, which has potential for more efficient parallel imple-
mentation. In addition, we aim to deliver the least number of pass
to achieve volume rotation. This requires that the designed shear be
as powerful as possible within the above constrains.

We first define an X-beam-Y-slice shear, which means an X-
beam is sheared within its Y-slice while the whole Y-slice is sheared
along with other Y-slices. The transformation matrix of it is

SHXbeamYslice =

2
4 1 0 0

a b c
c 0 e

3
5 : (5)

This shear is illustrated in 3D in Figure 2 using a perspective view,
where the dotted line box is sheared to the thick solid line box posi-
tion. The shaded slice of the dotted line box is shifted to the position
of the shaded slice of the thick solid line box. Within the slice, X
beams are sheared similarly as what is illustrated in Figure 1.
Similarly, we can define the other five 3D shears: X-beam-Z-

slice shear, Y-beam-X-slice shear, Y-beam-Z-slice shear, Z-beam-
X-slice shear and Z-beam-Y-slice shear. A favorable property is
that the transpose of a pseudo shear is still a pseudo shear by our
definition.

x

z

y

Figure 2:X-beam-Y-slice shear.

Now that we have defined 3D shears, we start to design the de-
composition of 3D rotation by using these shears. A 3D rotation
matrix can be expressed as the concatenation of three major axis



rotations,Rx(�); Ry(�) andRz(�). A different order of this con-
catenation results in different 3D rotation. Without losing gener-
ality, we chooseR = Rx(�)Ry(�)Rz(�) as our underlying 3D
rotation matrix.

Let us first design a decomposition using the X-beam-Z-slice
shear as the first pass. This shear has a lower triangular matrix,
which is much similar to the ’general shear’ used in Wittenbrink
and Somani [19]’s and Toffoli and Quick [16]’s decomposition,
except that there are scaling factors along the diagonal line of the
matrix. Once the first shear is determined, we then derive the sec-
ond shear. A first thing to know is that consecutive shears of the
same type produce a conforming shear. For example, for two X-
beam-Z-slice shears:

=

2
4 1 0 0

a b 0
c d e

3
5
2
4 1 0 0

a0 b0 0
c0 d0 e0

3
5

=

2
4 1 0 0

a+ a0b bb0 0
c0 + ad0 + ce0 bd0 + de0 ee0

3
5 :

(6)

In this respect, the second shear matrix has to be ‘complementary’
to the first shear matrix, which means for the second shear it has
to be an upper triangular matrix. This makes it a Z-beam-X-slice
shear. Therefore, we get the following decomposition:

R =

2
4 1 0 0

a b 0
c d e

3
5
2
4 f g h

0 1 i
0 0 1

3
5 :

(7)

This matrix equation implies nine trigonometric equations with
nine variables,a; b; c; d; e; f; g; h; i. In solving these equations we
obtain:

a =
sin� sin � cos�� cos � sin�

cos � cos�

b =
cos�

cos�

c =
cos� sin � cos�+ sin� sin�

cos � cos�

d = �
sin�

cos�

e =
1

cos � cos �

f = cos � cos�

g = cos � sin�

h = � sin �

i =
� cos � sin � sin�+ sin� cos�

cos� cos �
:

(8)

Because a decomposition sequence can be solely determined by
the first shear, we call the above sequence as X-beam-Z-slice se-
quence. Similarly, we can design the other five decompositions us-
ing each of the other five shear as the first pass. For each of the
shear sequences, we compute the product of the consecutive shear
matrices and make it equal to the target 3D rotation matrix to solve
for variables.

Since the scaling operation embeds in the shearing transforma-
tion, we have to address the same bottleneck problem as in Catmull

and Smith’method by solving for suitable shearing order. How-
ever, our decompositions allow us to have a very quick solution to
it. As we can see from the above decomposition Eq. 7,b ande
are two scaling factors forY andZ respectively for the first ma-
trix. From Eq. 8,e is guaranteed to be greater than one, indicating
a magnification inZ. However, the scaling factorb depends on
the two rotation angles:� and�. Here we discuss only the situ-
ation when0 � �; � < �. The discussion on the situation when
� � �; � < 2� is similar. When� < �, b is greater than one,
therefore the volume is magnified inY ; otherwise, the volume is
minified in Y . One approach is to permute different decomposi-
tion sequences and choose the one which is bottleneck-free. This
is not too bad as only six sequences need to be evaluated, while in
[8], 36 sequences have to be considered. However, our decomposi-
tion offers us a even simpler solution for some rotation angles. Let
us now look at another decomposition sequence: Z-beam-X-slice
sequence.

R =

2
4 a b c

0 d e
0 0 1

3
5
2
4 1 0 0

f 1 0
g h i

3
5

(9)

where,

a =
1

cos � cos�

b = �
sin� sin � cos�� cos � sin�

cos� cos �

c = �
sin �

cos � cos �

d =
cos�

cos �

e =
sin�

cos �

f = � tan�

g = cos � sin � cos�+ sin� sin�

h = cos � sin � sin�� sin� cos�

i = cos � cos �:

(10)

As we can see,a andd are two scaling factors forX andY re-
spectively for the first shear, wherea is guaranteed to be greater
than one. However, scale factord depends on the two rotation an-
gles: � and�. Opposite to the first sequence, when� > �, d is
greater than one; otherwise, it is less than one. Therefore, once we
have these two sequences, theoretically we can choose one from
them for any input rotation angles so that magnification comes first,
hence bottleneck free. One problem occurs when either� or � is
close to�

2
, the magnification factors become very large. When this

is the case, we need to permute through other four decomposition
sequences and find the most appropriate sequence to use based on
the input rotation angles. The other four decomposition sequences
are given in Appendix A.

4 SHEARING ON THE CUBE
ARCHITECTURE

Pure shear transformations have been implemented on several mas-
sively parallel distributed memory machines, such as the Connec-
tion Machine (CM-200) [14], Maspar MP-1 [17, 18, 19], and CAM-



8 [16]. Because of the semi-regularity of our pseudo shear, it can
also be very efficiently implemented on these machines.

Here we describe an application and its hardware design to per-
form efficient shearing on the Cube architecture [13]. Cube is a
multi-pipelined special-purpose hardware design for real-time vol-
ume rendering, which has been developed at the State University
of New York at Stony Brook and later adopted by Mitsubishi Elec-
tric for its VolumePro board [12]. In the current Cube/VolumePro
architecture, only a single volume is rendered at a time. However,
multiple overlapping volumes are common in the real world scene.
Consider the scenery where smoke rises up through a cloud, or a
radiation beam penetrates through a human organ. When objects
occupy the same space, colors from each object must be separately
classified and shaded prior to being modulated [10]. Because the
Cube design features a slice-by-slice processing order, slices from
different overlapping volumes have to be interlaced for a correct
rendering. Because the slice is determined by the storage order in
memory, it is critical to align the overlapping volumes so that their
memory storage reflects their physical positions. This involves a ro-
tation transformation. Straightforward hardware implementation of
volume rotation is very expensive [5, 7]. Rotation requires global
communication and could cause memory contention while writing
data back to the distributed memory modules. However, as the shear
transformation capitalizes on the nearest neighbor connections, it
lends itself to an extremely feasible multi-pipelined hardware im-
plementation. Because our design is based on the existing Cube ar-
chitecture, we desire to take full advantage of the existing Cube de-
sign to save hardware. There are two major issues to address when
performing a shear transformation on Cube: (1) the parallel access
of a beam and (2) the interpolation. Let us consider the memory
access first. In Cube design, we use a distributed skewed volume
buffer [9]. A voxel with space coordinates(x; y; z) is mapped onto
thek-th memory module out ofn modules by:

k = (x+ y + z) mod n (0 � k; x; y; z � n� 1) (11)

The data is distributed and skewed across the volume memory
modules. By providing direct connections from each of then Cube
processing unit to its dedicated volume memory module, this 3D
skewed organization of then3 voxels enables conflict-free access
to any directional beam ofn voxels. Because the shear transforma-
tions we have proposed guarantee a rigid translation of beams in at
least one major axis, therefore, after the beams are shifted (trans-
lated), they can still be written into the memory conflict free. We
utilize the neighboring connections between the Cube processing
units to shift a beam across the Cube processing units, much like a
barrel shifter (cf. [3]).

Cube/VolumePro also features a slice-by-slice processing order
and has on-chip slice buffers to cache voxel slices for interpola-
tion. Our pseudo shear also supports slice processing order. We
can utilize this on-chip slice buffers to take advantage of the mem-
ory access coherence to lower the bandwidth while employing the
trilinear interpolation unit of Cube to perform interpolation.

5 IMPLEMENTATION AND RESULTS

We first demonstrate the image rotation using our two-pass algo-
rithm. Figure 3a is the original image; Figure 3b is the intermediate
image after the first shear, and Figure 3c is the result after the sec-
ond shear and is the final result.

For volume rotation, we use a Gazebo volume data for demon-
stration. The original volume has the resolution of67 � 127 � 67,
with each voxel value ranging from 0 to 255. Volumes are ren-
dered using ray-casting. The original volume is shown in Figure
4a. Fig. 4b and Fig. 4c show two results ofX-beam-Y -slice se-
quence achieving the 3D rotation of� = 30�; � = 30�, and

� = 45�. After the two consecutive shears, the volume has res-
olution of253� 232� 114 and155� 159� 154, respectively. As
can be seen from the intermediate volume resolution, the volume is
enlarged at the first step.

To evaluate the quality of different approaches, we first rotate an
original volume withR = Rz(�70

�)Ry(�45
�)Rx(�10

�) using
the straightforward single pass method. Then we rotate the volume
with R = Rx(10

�)Ry(45
�)Rz(70

�) using different decomposi-
tion sequences. The results are depicted in Fig. 5. In the first im-
plementation, we use the Z-beam-X-slice sequence, which minifies
the volume first; while in the second we use X-beam-Z-slice se-
quence, which magnifies first. In the last implementation, we use
a straightforward single pass to rotate the volume back. The dif-
ference volume between the twice rotated volume and the original
is then calculated and volume rendered. The transfer function used
to render the difference volumes is a linear ramp between5 and
50 changing from zero to full opacity. Fig. 5a shows that Z-beam-
X-slice decomposition produces the largest error, while the single
pass rotation creates the least amount of error as can be seen from
Fig. 5c. As shown in Fig. 5b, X-beam-Z-slice decomposition pro-
duces much less error than the Z-beam-X-slice decomposition and
is very close to the single pass implementation.

6 CONCLUSIONS AND SUMMARY

We have presented two-pass decomposition methods for both 2D
image and 3D volume rotation. The obvious advantage of our
method is that (1) it requires the least number of shears to perform
an arbitrary volume rotation. Compared with Catmull and Smith’s
method, (2) our decomposition has the regularity property of the
pure shear in that it guarantees parallel access of a rigid beam.
Therefore, it is feasible for implementation on data parallel com-
puter architecture or multi-pipelined architecture. (3) It is more ef-
ficient to address the bottleneck problem. We permute at most only
six decomposition sequences, which is much less than other meth-
ods, e.g., at least 36 situations have to be permuted in Hanrahan’s
method. (4) Compared to two-pass shear in [2], our shear supports
a slice-by-slice processing order. This allows to take advantage of
the data access coherence to lower the memory access bandwidth.

We have further shown a straightforward and efficient imple-
mentation of the shear transformation on the Cube architecture, as
shearing capitalizes on the neighboring connections between the
Cube processing units. In each shear pass, an entire beam can be
accessed and processed in parallel.

One disadvantage of our method is the processing volume size.
Because the first shear is always magnification, therefore, we have
to process a larger volume than the original one. One candidate
solution is to keep track of the bounding box of the original volume
so that for each intermediate shear, we don’t have to work on the
whole volume.
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A Other 3D Decomposition Sequences

1. Y-beam-X-slice sequence

R =

2
4 a b c

0 1 0
0 d e

3
5
2
4 1 0 0

f g h
i 0 1

3
5 :

(12)

where,

a =
1

cos � cos�

b =
cos � sin�

sin� sin � sin�+ cos� cos�

c = �
cos� sin � cos�+ sin� sin�

sin� sin � sin�+ cos � cos�

d =
cos� sin � sin�� sin� cos�

sin� sin � sin�+ cos� cos�

e =
cos � cos�

sin� sin � sin�+ cos� cos�

f = sin� sin � cos�� cos � sin�

g = sin� sin � sin�+ cos� cos�

h = sin� cos �

i =
sin �

cos � cos�

(13)

2. Y-beam-Z-slice sequence

R =

2
4 a b 0

0 1 0
c d e

3
5
2
4 1 0 i

f g h
0 0 1

3
5 :

(14)

where,

a =
cos � cos �

sin� sin � sin�+ cos� cos�

b =
cos � sin�

sin� sin � sin�+ cos� cos�

c =
sin �

sin� sin � sin�+ cos� cos�

d =
cos� sin � sin�� sin� cos�

sin� sin � sin�+ cos� cos�

e =
1

cos� cos �

f = sin� sin � cos�� cos � sin�

g = sin� sin � sin�+ cos� cos�

h = sin� cos �

i = �
cos� sin � cos�+ sin� sin�

cos � cos �

(15)

3. Z-beam-Y-slice sequence

R =

2
4 a 0 b

c d e
0 0 1

3
5
2
4 1 f 0

0 1 0
g h i

3
5 :

(16)

where,

a =
sin� sin � sin�+ cos � cos�

cos� cos �

b = �
sin �

cos � cos �

c = �
sin�

cos �

d =
1

sin� sin � sin�+ cos � cos�

e =
sin�

cos �

f =
cos � sin�� sin� sin � cos�

sin� sin � sin�+ cos � cos�

g = cos � sin � cos�+ sin� sin�

h = cos � sin � sin�� sin� cos�

i = cos � cos �

(17)

4. X-beam-Y-slice sequence

R =

2
4 1 0 0

a b c
d 0 e

3
5
2
4 f g h

0 1 0
0 i 1

3
5 :

(18)

where,

a =
sin � sin � cos�� cos� sin�

cos � cos�

b =
1

sin � sin � sin�+ cos � cos�

c =
sin � cos�� cos� sin � sin�

cos � cos�

d =
cos � sin � cos�+ sin� sin�

cos � cos�

e =
sin � sin � sin�+ cos � cos�

cos � cos�
f = cos � cos�

g = cos � sin�

h = � sin �

i = �
sin� cos �

sin� sin � sin�+ cos � cos�

(19)



            

            

(a) Original Image (b) First Shear (c) Second Shear

Figure 3:Two-pass shear achieves 2D rotation (� = 30�)                        

(a)Original gazebo (67� 127� 67) (b) First shear (253� 232 � 114) (c) Second shear (155� 159 � 154)

Figure 4:Two-pass shear achieves 3D arbitrary rotation (� = 30�; � = 30�, and� = 45�)
            

(a) Z-beam-X-slice sequence

            

(b) X-beam-Z-slice sequence

            

(c) Single pass rotation

Figure 5: Volume rendering of the difference volumes for the various decomposition sequences. The original Gazebo volume is
first rotated byR = Rz(�70

�)Ry(�45
�)Rx(�10

�) using the straightforward single pass method. Then, it is rotated byR =
Rx(10

�)Ry(45
�)Rz(70

�) using the various methods. Finally, the difference volume between thus twice rotated volume and the origi-
nal volume is calculated and volume rendered. The transfer function used is a linear ramp between5 and50 changing from zero to full
opacity (maximum voxel value 255).


