
3D Volume Rotation Using Shear Transformations

Baoquan Chen and Arie Kaufman

Center for Visual Computing (CVC)
and Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

Email:fbaoquan,arig@cs.sunysb.edu

Abstract

We present a group of methods of decomposing an arbitrary 3D volume rotation into a sequenceof simple shear (i.e., regular
shift) operations. We explore different types of shear operations:2D beam shear, a shear in one coordinate based on the other
two coordinates;2D slice shear, a shear of a volume slice (in two coordinates) according to the third coordinate; and2D slice-
beam shear, the combination of a beam shear and a slice shear. We show that an arbitrary 3D rotation can be decomposed into
four 2D beam shears. We use this decomposition as a basis to obtain the decomposition sequence of 3D rotation into four 2D
slice shears or three 2D slice-beam shears. Moreover, we observe that two consecutive slice shears can be achieved by shifting
beams in 3D space, a transformation we call a3D beam shear. Therefore, an arbitrary 3D rotation can be decomposed into
only two 3D beam shears. Because of the regularity and simplicity of the shear operation, these decompositions are suitable for
implementations on a multi-pipelined hardware or a massively parallel machine. In addition, we presente a resampling scheme,
in which only single pass resampling is required when performing multiple pass shears to achieve 3D volume rotation.

1 Introduction

Three-dimensional volume transformation plays a key role in volume modeling and manipulation, registration of multiple
volumes, and volume rendering [4]. Straightforward hardware implementation of volume rotation is very expensive [3, 5].
Naive implementation on parallel machines is also inefficient because rotation requires global communication and could cause
contention while writing data back to the distributed memory modules. Shear transformations, however, capitalize on the
nearest neighbor connections and lend themselves to a feasible hardware or parallel implementation. Any hardware with a
barrel shifter can efficiently perform shear transformation. Utilizing the neighboring connection, a barrel shifter is able to shift
an entire beam of voxels bym places in one shift cycle [2]. Shear or pseudo shear has also been implemented on parallel
machines [11, 15].

Existing algorithms of decomposing 3D volume rotation into shears are usually direct extensions of the multiple-pass algo-
rithms for 2D image rotation. Drebin et al. [4] decomposed an arbitrary 3D rotation into sequences of major axis rotations,
each of which could be performed as a 2D rotation of every slice perpendicular to the axis. They further applied Catmull and
Smith’s [1, 12] two-pass algorithm for each 2D rotation. Later, Hanrahan [6] generalized the two-pass image transformation
method to a three-pass algorithm for volume affine transformation. This generalization is significant; however, the caveat is
that each pass is a more complicated pseudo shear transformation — a shift coupled with scaling. This scaling not only com-
plicates the resampling, but also may cause a situation (calledbottleneck) where a beam (a volume row) is first shrunk and then
magnified so that the original beam can not be recovered.

A three-shear decomposition of a 2D image rotation was introduced independently by Paeth [8] and Tanaka et al. [13],
expressed as:

R2D(�) =

�
cos� � sin�
sin� cos�

�

=

�
1 0

� tan �
2

1

� �
1 sin�
0 1

� �
1 0

� tan �
2

1

�
(1)

A 1D shear operation does not suffer from any bottleneck problems and its resampling is also much simpler. A straight-
forward extension of this method to 3D was performed by Schroeder and Salem [11]. From the initially obtained nine shear
decomposition sequence, they managed to merge two neighboring shears into a single shear, resulting in an eight-shear decom-
position. The first attempt of directly performing decomposition on 3D rotation was recently taken by Toffoli and Quick [14]
and also mentioned by Wittenbrink [17]:

R = Rx(�)Ry(�)Rz(�)

=

2
4 1 a12 a13

0 1 a23
0 0 1

3
5
2
4 1 0 0

b21 1 0
b31 b32 1

3
5
2
4 1 c12 c13

0 1 c23
0 0 1

3
5 (2)

Each matrix in Eq. 2 is an upper/lower triangular matrix, which can be interpreted as ageneral shearoperation — first sliding
(shearing) volume slices (a volume plane perpendicular to a major axis) along one another and then sliding (shearing) beams
within each slice along one another.

In this paper, we present a group of methods for decomposing an arbitrary 3D rotation into sequences of different types
of shear. We start in Section 2 with a2D beam sheardecomposition of four passes, in whicheach shear pass only involves
sliding beams along each other. 2D beam shear is the simplest of the shear operations, as it involves only 1D shifts. We then
use this decomposition as a basis to obtain all the other types of shear decompositions. First, we observe that transposing a
2D beam shear matrix gives us a matrix defining a2D slice shear, in which slices slide along each other, but each slice itself
remains rigid. Consequently, we transpose a 2D beam shear sequence and obtain a 2D slice shear sequence (Section 3). More
attractively, we observe that two consecutive slice shears can be equally achieved by shifting (translating) a beam in 3D space,
an operation we define as3D beam shear. Therefore, by merging two neighboring shears in the 2D slice shear sequence, we
obtain a two pass 3D beam shear (Section 4). Second, since a 2D beam shear can be replaced with two 1D shears, in a 2D beam
shear sequence we can split the second shear in this manner and merge the two 1D shears with the first and third 2D shears,
resulting in a2D slice-beamshear for each (Section 5). This results in a three pass 2D slice-beam shear decomposition. The
first two passes of this decomposition are of the same complexity as Toffoli and Quick’s three pass decomposition, but our last
pass is simpler, a mere 2D beam shear. In addition, our 2D slice-beam shear matrix is not restricted to being either a lower

2

or upper triangular matrix as hinged in Toffoli and Quick’s decomposition. This yields more combinations of decomposition
sequences.

Multiple decomposition gives us a fine implementation trade-off. The type of shear ranges from the simplest 2D beam shear
to a 3D beam shear with increasing complexity, while the number of decomposition passes range from four to two. Each type
of shear operation features different implementation. Nevertheless, all shears guarantee a rigid translation of beams along at
least one axis.

2 3D Rotation by 2D Beam Shears

In a 2D beam shear, a beam is merely shifted in its major direction without any change in the other two coordinates. As an
example, a 2Dx-beam shear is expressed as:

x = x+ a � y + b � z (3)

Figure 1 shows a 2Dx-beam shear. The dotted line box is sheared to the thick solid line box position.
A 2D beam shear is the simplest shear since a beam is shifted without scaling and without changing the other two coordinates.

Therefore, only linear interpolation is required for resampling, as opposed to bilinear interpolation for Toffoli and Quick’s
general shear.

If we construct a 2D beam shear directly from a 2D rotation decomposition we need at least eight passes [11]. Since Toffoli
and Quick have presented a three pass ‘general’ shear decomposition, intuitively splittingeach pass into two 2D beam shears
provides a six 2D beam shear sequence. We can further merge two neighboring shears, which operate on the same directional
beam, and obtain a five pass 2D beam shear decomposition. However, we can do better than that, as described next.

We desire to apply a decomposition directly to the 3D rotation matrix. To elucidate the following description, we write a
2D x-beam shear asS(xb; a; b), interpreted as a 2Dx-beam shear alongy andz by a andb, respectively. A 2Dy-beam shear,
S(yb; c; d) and a 2Dz-beam shear,S(zb; e; f) are similarly defined.

In 3D, there are three directional beam shears. Consecutive shears along the same axis produce a conforming shear. For
example:

S(xb; a; b) � S(xb; a
0; b0)

=

2
4 1 0 0

a 1 0
b 0 1

3
5
2
4 1 0 0

a0 1 0
b0 0 1

3
5

=

2
4 1 0 0

a+ a0 1 0
b+ b0 0 1

3
5

(4)

Therefore, when we design our shear sequence, neighboring shears have to be in different directions. However, as shown in
the following, three distinct beam shearsM can not achieve an arbitrary 3D rotation.

M = S(xb; a; b) � S(yb; c; d) � S(zb; e; f)

=

2
4 1 0 0

a 1 0
b 0 1

3
5
2
4 1 c 0

0 1 0
0 d 1

3
5
2
4 1 0 e

0 1 f

0 0 1

3
5

=

2
4 1 c e + cf

a ac+ 1 ae + (ac + 1)f
b bc+ d be + (bc+ d)f + 1

3
5

(5)

If M is to be a rotation, normality of the first column and row requires thata = b = c = e � 0. M is then simplified to

M =

2
4 1 0 0

0 1 f

0 d df + 1

3
5 (6)

3

Further, normality of the second column and row demands thatd = f � 0. ThusM � I. This proves that three distinct
beam shears can only achieveidentityrotation.

To build the general 3D matrix from 2D shear matrices, we need at least four 2D beam shears. Using similar analysis as
above, the fourth 2D beam shear can not be in the the same direction as the second shear. It also can not be in the same direction
as the third shear according to Eq. 4. Therefore, the fourth 2D beam shear has to be the same directional shear as the first 2D
beam shear. From these constraints, we can have six permutations of shear sequence:(Xb; Yb; Zb; Xb), (Xb; Zb; Yb; Xb),
(Yb; Xb; Zb; Yb), (Yb; Zb; Xb; Yb), (Zb; Xb; Yb; Zb), (Zb; Yb; Xb; Zb), where capital characters indicate the beam directions.

A 3D rotation matrix can be expressed as the concatenation of three major axis rotations,Rx(�); Ry(�) andRz(�). A Differ-
ent order of this concatenation results in different 3D rotation. Without losing generality, we chooseR = Rx(�)Ry(�)Rz(�) as
our underlying 3D rotation matrix. Foreach of the shear sequences, we compute the product of the consecutive shear matrices
and make it equal to the target 3D rotation matrix. As an example, we take the sequence of(Yb; Zb; Xb; Yb).

R = Rx(�)Ry(�)Rz(�)

= S(yb; c; d) � S(zb; e; f) � S(xb; a; b) � S(yb; g; h) (7)

This matrix equation implies nine trigonometric equations with eight variables,a; b; c; d; e; f; g andh. In solving these
equations we obtain:

a = � cos � sin�

b =
cos � sin�+ sin� sin � cos�� cos � sin�

sin� cos �

c =
sin � sin�(cos �� cos �) + sin�(cos � � cos�)

sin� sin� cos2 �

d =
cos� cos � � 1

sin� cos �

e = �
cos � sin � sin�� sin� cos�+ sin� cos �

cos � sin�

f = sin� cos �

g = �
cos � cos�� 1

cos � sin�

h =
sin� sin �(cos � � cos�) + sin�(cos�� cos �)

sin� sin� cos2 �

(8)

In the same way, we can obtain the remaining five shear sequences for a given 3D rotation matrix. We use a similar volume
data to the one used by Toffoli and Quick [14] to demonstrate our decomposition. The original volume has the resolution
of 643, with each voxel of one byte. Volumes are rendered using ray-casting. The original volume is shown in Figure 2a.
Fig. 2b — Fig. 2e show one such sequence of the four consecutive 2D beam shear transformations achieving the 3D rotation of
� = 45�; � = 30�, and� = 30�.

From Eq. 8, we see that when the angle� is 90� or when angle� or � is 0�, the denominator becomes zero. This is a
singularity problem, which also exists in all previous decompositions. However, since foreach 3D rotation we provide six
decomposition sequences, the angles causing singularity foreach sequence are different. We can choose different sequences
according to the rotation angles to avoid the singularity problem. The following is the solution for all the special cases of Eq. 8.

1. when both� and� are zero, the 3D rotation degenerates to a 2D rotation ofRy(�).

2. when� = 90�, and� = �, it degenerates to a 2D rotation ofRy(90
�).

3. when� = 90�, and� 6= �, we choose the sequence(Zb; Yb; Xb; Zb).

4. when� = 0�, we choose the sequence(Xb; Zb; Yb; Xb).

5. when� = 0�, we choose the sequence(Zb; Yb; Xb; Zb).

4

3 3D Rotation by 2D Slice Shears

In a 2D slice shear, a slice is merely shifted within its plane. For example, a 2Dy-slice shear is expressed as:

x = x+ c � y

z = z + d � y
(9)

Fig. 3 illustrates the 2Dy-slice shear. The thick solid line box is the shear result of the dotted line box.
We write a 2Dy-slice shear asS(ys; c; d), interpreted as ay-slice shear alongx andz by c andd, respectively. A 2Dx-slice

shear,S(xs; a; b), and a 2Dz-slice shear,S(zs; e; f) are similarly defined. We can derive 2D slice shear decompositions in
the same way as described in Section 2. But, more straigtforwardly, we can derive them directly from obtained 2D beam shear
decompositions.

A slice shear matrix can be obtained by transposing a beam shear matrix. Therefore, by transposing a 2D beam shear
sequence, we can obtain a 2D slice shear sequence. For example, take Eq. 7 and transpose each side

R
T

= Rz(��)Ry(��)Rx(��)

= [S(yb; c; d) � S(zb; e; f) � S(xb; a; b) � S(yb; g; h)]
T

=

2
4
2
4

1 c 0

0 1 0

0 d 1

3
5
2
4

1 0 e

0 1 f

0 0 1

3
5
2
4

1 0 0

a 1 0

b 0 1

3
5
2
4

1 g 0

0 1 0

0 h 1

3
5
3
5
T

=

2
4

1 0 0

g 1 h

0 0 1

3
5
2
4

1 a b

0 1 0

0 0 1

3
5
2
4

1 0 0

0 1 0

e f 1

3
5
2
4

1 0 0

c 1 d

0 0 1

3
5

= S(ys; g; h) � S(xs; a; b) � S(zs; e; f) � S(ys; c; d)

(10)

Since the transpose of a rotation is equal to the inverse of the rotation, this obtained slice shear sequence achieves an inverse
of the original rotation. To obtain 2D slice shear decomposition for a given rotation, we need to first calculate the 2D beam shear
decompositions for the inverse rotation and then apply the transpose transformation. Since each 2D beam shear decomposition
corresponds to a 2D slice shear decomposition, we can also obtain six sequences of 2D slice shear decomposition. Fig. 4a
— Fig. 4d show one such sequence of the four consecutive 2D slice shear transformations achieving the 3D rotation of� =
45�; � = 30�, and� = 30�.

4 3D Rotation by 3D Beam Shears

We further observe that two neighboring slice shears have one directional beam in common, and the combination of two can
be achieved by shifting (or translating) these common beams in 3D space. For example,x-beam is a common beam ofy-slice
andz-slice shears. We call this kind of beam translation in 3D space a 3D beam shear. Fig. 5 shows a 3Dx-beam shear, which
is equivalent to the concatenation of two consecutive 2D slice shearsS(ys; c; d)S(zs; e; f). Similarly, we define the other two
directional 3D beam shears: 3Dz-beam shear, equivalent toS(xs; a; b)S(ys; c; d) or S(ys ; c; d)S(xs; a; b), and 3Dy-beam
shear, equivalent toS(xs; a; b)S(zs; e; f) or S(zs; e; f)S(xs; a; b). Every 3D beam shear involves only one major beam. In
Fig. 5, the darkerx-beam is translated to a new 3D location following the arrows. The lighter beam indicates the intermediate
position if we interpret this as two consecutive 2D slice shears.

Therefore, given a slice shear decomposition, the number of shears can be reduced to merely two by introducing 3D
beam shear. We denote the three directional 3D beam shears asSx3D , Sy3D and Sz3D . Now, an arbitrary 3D rotation
can be decomposed into only two consecutive 3D beam shears. For example, directly from the 2D slice shear sequence
S(ys; c; d) � S(zs; e; f) � S(xs; a; b) � S(ys; g; h), a 3D beam shear sequence is obtained as:

R = Sx3D � Sz3D (11)

where

5

Sx3D = S(ys; c; d) � S(zs; e; f)

=

2
4 1 0 0

c + de 1 + df d

e f 1

3
5

Sz3D = S(xs; a; b) � S(ys; g; h)

=

2
4 1 + ag a b+ ah

g 1 h

0 0 1

3
5

(12)

Fig. 4b and Fig. 4d show the two consecutive 3D shear transformations achieving the 3D rotation of� = 45�; � = 30�,
and� = 30�. A unique property of this decomposition is that a 3D rotation only involves a minimum of two major beam
transformations. However, an intuitive implementation of this decomposition leads to complex interpolation. We provide more
discussion on this in Section 6 and 7.

5 3D Rotation by 2D Slice-Beam Shears

In a 2D slice-beam shear, slices shift within their planes, while beams within each slice shift along one another. For example, a
2D y-slice-x-beam shear is expressed as:

x = x+ c � y + g � z

z = z + d � y
(13)

We write a 2Dy-slice-x-beam shear asS(ysxb; c; d; g), interpreted as ay-slice shear alongx andz by c andd, respectively,
and anx-beam shear alongz by g. Figure 6 illustrates this shear operation. The dotted line box is sheared to the thick solid line
box position.

In Toffoli and Quick’s decomposition, each pass is a lower orupper triangular matrix, which is a 2D slice-beam shear.
However, a 2D slice-beam shear matrix is not necessarily a lower or upper triangular matrix. Here we make this kind of shear
more general. From a 2D beam shear decomposition, we can obtain a 2D slice-beam shear by simply rearranging the matrices.
For example, if we take Eq. 7, split the second pass into two 1D shears, and merge them with the first and third passes, we form
the following three pass decomposition.

R = S(yb; a; b) � S(zb; e; f) � S(xb; c; d) � S(yb; g; h)

=

2
4 1 a 0

0 1 0
0 b 1

3
5
2
4 1 0 e

0 1 f

0 0 1

3
5
2
4 1 0 0

c 1 0
d 0 1

3
5
2
4 1 g 0

0 1 0
0 h 1

3
5

=

2
4 1 a e

0 1 0
0 b 1

3
5
2
4 1 0 0

c+ df 1 f

d 0 1

3
5
2
4 1 g 0

0 1 0
0 h 1

3
5

= S(xsyb; a; e; b) � S(ysxb; c+ df; f; d) � S(yb; g; h)

(14)

In this three pass decomposition, the first two shears are 2D slice-beam shear, while the third one remains a 2D beam
shear. We can obtain the other 2D slice-beam shear decomposition sequences by applying the same operation to the other 2D
beam shear decompositions. Therefore, not only are our three pass decompositions slightly simpler than Toffoli and Quick’s
decomposition, but we can also provide multiple decomposition sequences. Fig. 7a — Fig. 7c show one such sequence of two
consecutive 2D slice-beam shear and one 2D beam shear transformations achieving the 3D rotation of� = 45�; � = 30�, and
� = 30�.

6

6 Resampling

When multiple pass algorithms are used, the resampling techniques chosen are key to achieving high quality. We present two
resampling approaches:multiple resamplingandsingle resampling. Intuitively, resampling is necessary for each pass because
a continuous shear transformation may move voxels off the grid points. The shear results shown in Figures 2, 4, and 7 are
results with resampling in each pass. The problem with multiple resampling is that the resulting volume quality is lower than
the straightforward one-pass rotation. Therefore, we devise a technique to perform only single pass resampling while taking
advantage of the regular data flow of multiple shears.

When performing multiple resampling,each resampling pass is usually a simple 2D or even 1D interpolation (except 3D
shear decomposition) because of the simplicity of each shear pass. A 2D beam shear requires a simple linear interpolation,
while a 2D slice shear requires bilinear interpolation. In a 2D slice shear, the whole slice shifts as a rigid plane; all voxels
within the same slice have the same displacement such that they share the same bilinear interpolation weights. A 2D slice-beam
shear also requires bilinear interpolation, but due to an additional beam shear withineach slice, each beam has a different
bilinear interpolation weights. However, voxels within a beam still share the same weights. Compared with the other shears,
3D beam shear involves the most complicated interpolation — trilinear interpolation.

One problem with multiple resampling is the quick degradation of the volume quality when consecutive rotations are applied
to a volume. It is thus desirable to sample the volume only once. Here we propose such a method. The idea is to precompute
a sampled volume and then use only zero-order (nearest neighbor) interpolation ineach shear pass to shuffle sampled voxels
to their destinations. This is similar to Wittenbrink and Somani’s permutation warping [16, 17]. However, there the sampled
voxels are sent to their destinations using a global communication.

Given an original volume (source volume) and the desired rotated volume (target volume), we first set up one-to-one cor-
respondence between a source voxel and a target voxel. This one-to-one mapping is guaranteed by our multi-pass shear de-
composition, because each shear is one-to-one transformation when using zero-order interpolation [16]. The concatenation of
a sequence of one-to-one mapping remains one-to-one. Once this one-to-one correspondence is set up, we calculate foreach
source voxel its corresponding target voxel and store it in the source voxel position. During this procedure, no global communi-
cation is required, the resampling is performed by interpolation on the local voxels. The sampling position ofeach target voxel
is computed using the backward transformation of the rotation.

After we obtain the values for all target voxels and store them in the source voxels, we must shuffle them to their destinations
in the target volume. Intuitively, this involves a global communication. However, global communication is expensive to perform
for parallel implementation. Therefore, we use multiple shears with a nearest neighbor placement scheme to achieve this voxel
shuffling. As shear is a regular, conflict-free transformation,each pass can thus be very efficiently performed. Using our 3D
beam shear decomposition, we only need a minimum of two passes of regular local communication to achieve the effect of
global communication.

Note that care must be taken to avoid the overlap of beams in 3D beam shear. Take the 3Dx-beam shear in Eq. 12 as
an example. While eachx-beam is preserved, i.e., anx-beam remains rigid after a 3Dx-beam shear, severalx-beams may
overlap with each other. To maintain the required one-to-one mapping, we have to utilize the fact that a 3D beam shear is the
concatenation of two 2D slice shears (Section 4). A 2D slice shear maintains an one-to-one mapping when using zero-order
interpolation. Therefore, our solution is to calculate the destination coordinates using the same order as that of two consecutive
2D slice shears (but we perform communication only once). For a 3Dx-beam shear, while thex-coordinate is calculated
directly using the 3D shear matrix, they andz coordinates of each beam are calculated as follows:

z0 = round(z + b � y)

y0 = round(y + f � z0) (15)

whereround(w) is a function of roundingw to the nearest integer. Coordinates(y0; z0) determine the integral coordinates
of the whole beam for the nearest neighbor storage. This way, no overlaps occur.

Fig. 8 shows the two 3D beam shear steps achieving 3D volume rotation when using only single resampling. We use a
voxelized gazebo (Fig. 8a) to demonstrate the results. Fig. 8b shows the intermediate sampled volume by calculating and
storing in each source voxel its assigned destination voxel. Fig. 8c and Fig. 8d show that after two 3D beam shears, using only a
nearest neighbor placement scheme, sampled voxels move exactly to their destination locations. Note that in an implementation,
the interpolation operation can be merged with the first 3D beam shear pass. There is no need to create an intermediate sampled
volume, instead, once the samples of anx-beam is computed, they are shifted using the 3Dx-beam shear. The second beam
shear performs no interpolation, but merely shifting.

7

To evaluate the quality of different approaches, we rotate an original volume withR = Rx(�)Ry(�)Rz(�) using slice-shear
decomposition (Ys; Zs; Xs; Ys) and then rotate the result back to its original orientation withR = Rz(��)Ry(��)Rx(��).
The difference volume between the twice rotated volume and the original is then calculated and volume rendered. We use a
forth and back rotation of� = 45; � = 30, and� = 30 for demonstration. The transfer function used is a linear ramp between
0 and50 changing from zero to full opacity. Fig. 9a shows that no resampling (nearest neighbor placement) produces the
largest error. Multiple resampling (non-zero order interpolation) produces much less error than the nearest neighbor approach,
as shown in Fig. 9b. Single pass resampling creates the least amount of error as can be seen from Fig. 9c, which is identical to
direct 3D volume rotation.

7 Shearing on the Cube Architecture

Shear transformation has been implemented on several massively parallel distributed memory machines, such as the Connection
Machine (CM-200) [11], Maspar MP-1 [15, 16, 17], and CAM-8 [14]. Shearing can also be very efficiently implemented on
any hardware with a barrel shifter [2].

We describe another hardware design to perform efficient shearing. It is the Cube architecture [10], a special-purpose
hardware design for real-time volume rendering, developed at the State University of New York at Stony Brook. Mitsubishi
Electric VolumePro board [9], based on the Cube-4 design, is expected to be available on the market in the second quarter
of 1999. In the Cube architecture, volume rotation is especially important for rendering overlapping volumes. Consider the
scenery where smoke rises up through a cloud, or a radiation beam penetrates through a human organ. Because the Cube design
features a slice-by-slice processing order, slices from different overlapping volumes should be interlaced for a correct rendering.
The slice is determined by the storage order in memory, therefore, it is critical to align the overlapping volumes so that their
memory storages reflect their physical positions. This involves a rotation transformation. Straightforward implementation of
3D rotation in hardware is very expensive. Rotation requires global communication and could cause memory contention while
writing data back to the distributed memory modules. However, as shear transformation capitalizes on the nearest neighbor
connections, it lends itself to an extremely feasible multi-pipelined hardware implementation.

We use a distributed skewed volume buffer [7] in the Cube design. A voxel with space coordinates(x; y; z) is mapped onto
thek-th memory module out ofn modules by:

k = (x+ y + z) mod n (0 � k; x; y; z � n� 1) (16)

The data is distributed and skewed across the volume memory modules. By providing direct connections fromeach of
then Cube processing unit to its dedicated volume memory module, this 3D skewed organization of then3 voxels enables
conflict-freeaccess to any directional beam ofn voxels.

All types of shear transformations we have proposed, including 3D beam shear, guarantee a rigid translation of beams in
at least one major axis. According to our skewed memory design, a beam can be read out from the memory without conflict.
After it is shifted (translated), it can also be written into the memory conflict free, because each voxel within a beam is mapped
to a different memory module. For example, after a 3Dx-beam shear, the newy andz coordinatesy0 andz0 are all the same
across the whole beam (Eq. 15), the voxel coordinates within a beam differ only inx, but one unit apart between neighboring
voxels. Such that, according to Eq. 16, a shifted beam is still distributed amongn memory modules. We utilize the neighboring
connections between the Cube processing units to shift a beam across the Cube processing units, much like a barrel shifter (cf.
[2]).

8 Conclusions and Summary

We have presented several decomposition methods for 3D arbitrary rotation using shear transformations. Our decomposi-
tions range through a four pass 2D beam shear, four pass 2D slice shear, three pass 2D slice-beam shear, and a two pass 3D
beam shear. Our decompositions are advantageous over previous methods in various ways. All shear transformations of our
decompositions are one-to-one mapping and thus are simpler than the pseudo shears [6].

Second, more decompositions are provided to allow implementation alternatives and trade-offs. Two 3D beam shear de-
composition is the best for single pass resampling because it requires the least number of passes. However, it requires 3D
interpolation for the resampling. When the simplicity of interpolation is preferred, four 2D beam shear decomposition with
multiple resampling is the most appropriate because it only requires the simplest linear interpolation. On the other hand, three
2D slice-beam shear reduces the number of shear passes by one, requiring slightly more expensive 2D bilinear interpolation for
the resampling.

8

Furthermore, we have experimented with and discussed two different resampling methods: multiple pass resampling, and
single pass resampling. We have concluded that single resampling produces the highest quality results. It offers exactly the
same rotation quality as the direct one pass 3D rotation.

We have further shown a straightforward and efficient implementation of the shear transformation on the Cube architecture,
as shearing capitalizes on the neighboring connections between the Cube processing units. Ineach shear pass, an entire beam
can be accessed and processed in parallel.

9 Acknowledgments

This work has been supported by NSF grant MIP9527694 and ONR grant N000149710402. Thanks to Alvy Ray Smith for
carefully reading our initial paper and providing us valuable comments. Thanks also to Amitabh Varshney and Frank Dachille
for many productive discussions, and to Hong Qin, Kevin Kreeger and Ingmar Bitter who took part in many related discussions.
The gazebo was voxelized by Sidney Wang from a polygonal model.

9

x

z

y
a y

b z

Figure 1:x-beam shear along y and z by a and b, respectively.

10

(a) original orientation

(b) Step 1: 2Dy-beam shear (c) Step 2: 2Dz-beam shear

(d) Step 3: 2Dx-beam shear (e) Step 4: 2Dy-beam shear

Figure 2:3D rotation (� = 45�; � = 30�, and� = 30�) achieved by four consecutive 2D beam shears.

x

z

y

d y
c y

Figure 3:y-slice shear along x and z by a and b.

11

(a) Step 1: 2Dy-slice shear (b) Step 2: 2Dz-slice shear

(c) Step 3: 2Dx-slice shear (d) Step 4: 2Dy-slice shear

Figure 4:3D rotation (� = 45�; � = 30�; � = 30�) achieved by four 2D slice shears.

x

z

X Beam

y
y-slice

z-slice

Figure 5:A 3Dx-beam shear.

x

z

y

c y
d y

g z

Figure 6:2D y-slice-x-beam shear: 2Dy-slice shear alongx andz by c andd, respectively, combined with 2Dx-beam shear
alongz byg.

12

(a) Step 1: 2Dx-slice-y-beam shear

(b) Step 2: 2Dy-slice-x-beam shear (c) Step 3: 2Dy-beam shear

Figure 7:3D rotation (� = 45�; � = 30�; � = 30�) achieved by two 2D slice-beam shears and one 2D beam shear.

(a) Original gazebo (b) After interpolation

(c) 3Dx-beam shear (d) 3Dz-beam shear

Figure 8:3D rotation of the gazebo using two 3D beam shears and single pass resampling.

13

(a) Nearest neighbor (b) Multiple resampling (c) Single pass resampling

Figure 9:Volume rendering of the difference volume for the various resampling methods. The original volume is rotated forth
and back with the same angles using the various methods. Then the difference volume between the twice rotated volume and
the original volume is calculated and volume rendered. The transfer function used is a linear ramp between0 and50 changing
from zero to full opacity.

14

References

[1] E. Catmull and A. R. Smith. 3-D transformations of images in scanline order.Computer Graphics (SIGGRAPH ’80
Proceedings), 14(3):279–285, July 1980.

[2] D. Cohen and R. Bakalash. The conveyor: an interconnection device for parallel volumetric transformations.Advances
in Graphics Hardware VI, pages 77–85, 1992.

[3] M. Doggett and G. Hellestrand. A hardware architecture for video rate shading of volume data.International Symposium
of Circuits and Systems, pages 433–436, May 1995.

[4] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.Computer Graphics (SIGGRAPH ’88 Proceedings),
22:65–74, Aug. 1988.

[5] T. Günther, C. Poliwoda, C. Reinhard, J. Hesser, R. M¨anner, H.-P. Meinzer, and H.-J. Baur. VIRIM: A massively parallel
processor for real-time volume visualization in medicine.The 9th Eurographics Hardware Workshop, pages 103–108,
Sept. 1994.

[6] P. Hanrahan. Three-pass affine transforms for volume rendering.Computer Graphics (San Diego Workshop on Volume
Visualization), 24(5):71–78, Nov. 1990.

[7] A. Kaufman and R. Bakalash. Memory and processing architecture for 3D voxel-based imagery.IEEE Computer Graphics
& Applications, 8(6):10–23, Nov. 1988. Also in Japanese,Nikkei Computer Graphics, 3, No. 30, March 1989, pp. 148–
160.

[8] A. W. Paeth. A fast algorithm for general raster rotation. InProceedings of Graphics Interface ’86, pages 77–81, May
1986.

[9] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro real-time ray-casting system.To Appear in
Proceedings of SIGGRAPH1999, Aug. 1999.

[10] H. Pfister and A. Kaufman. Cube-4: A Scalable Architecture for Real-Time Volume Rendering.Proceedings of1996
Symposium on Volume Visualization, pages 47–54, Oct. 1996.

[11] P. Schröder and J. B. Salem. Fast rotation of volume data on parallel architectures.IEEE Visualization ’91 Proceedings,
pages 50–57, 1991.

[12] A. R. Smith. Planar 2-pass texture mapping and warping.Computer Graphics (SIGGRAPH ’87 Proceedings), 21:263–
272, July 1987.

[13] A. Tanaka, M. Kameyama, S. Kazama, and O. Watanabe. A rotation method for raster image using skew transformation.
Proc IEEE Conf on Computer Vision and Pattern Recognition, pages 272–277, June 1986.

[14] T. Toffoli and J. Quick. Three-dimensional rotations by three shears.Graphical models and image processing: GMIP,
59(2):89–95, Mar. 1997.

[15] G. Vezina, P. A. Fletcher, and P. K. Robertson. Volume rendering on the maspar MP-1.1992 Workshop on Volume
Visualization, pages 3–8, 1992.

[16] C. M. Wittenbrink and A. K. Somani. 2D and 3D optimal parallel image warping. InSeventh International Parallel
Processing Symposium, pages 331–337. ACM, Apr. 1993.

[17] C. M. Wittenbrink and A. K. Somani. Permutation warping for data parallel volume rendering. InACM SIGGRAPH
Symposium on Parallel Rendering, pages 57–60, Nov. 1993.

15

