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Abstract

With the advent of high-powered, commodity volume visualization
hardware comes a new challenge: effectively harnessing the visu-
alization power to enable greater understanding of data through
dynamic interaction. We examine Cube-4/VolumePro as the latest
advance in real-time volume visualization hardware. We describe
tools to utilize this hardware including a software developers’ kit,
called the Cube Toolkit (CTK). We show how the CTK supports al-
gorithms such as perspective rendering, overlapping volumes, and
geometry mixing within volumes. We examine a case study of a
virtual colonoscopy application developed using the CTK.

1 Introduction

We are presently in the midst of a paradigm shift in volumet-
ric imaging technology. New commodity hardware systems are
rapidly emerging for real-time volume visualization. In the past,
inspection of 3D volumetric data was a time consuming offline
operation, requiring tedious parameter modifications to generate
each still image. For example, a still image of a reconstructed
3D pelvis might take several seconds to several minutes to gen-
erate due to the large amount of storage and processing power
required for software volume rendering. Although costly texture
mapping hardware has been used for interactive, low-quality vol-
ume rendering, new hardware volume visualization systems, such
as Cube-4/VolumePro [25] by Mitsubishi Electric, enable true real-
time 30Hz volume rendering of volumetric datasets. Herein, we
describe the methods that we have developed to effectively harness
this emerging visualization power for both the developer and end
user. We demonstrate our techniques with a virtual colonoscopyap-
plication designed to allow mass screening for colon cancer using
interactive, guided navigation through a 3D reconstructed model
from a computed tomography (CT) scan of a patient’s colon.

Much of our data these days comes in volumetric form through
either sampling (e.g., CT), simulation (e.g., supercomputer simu-
lation of protein folding), or modeling (e.g., virtual prototyping
of replacement bones). Yet computers relegate us to examining
2D projections of our data. To increase our 3D understanding of
the objects in 2D images, volume rendering hardware incorporates
high-quality shading and interactivity with the kinetic depth effect.
The wealth of volumetric data is increasing also in another dimen-
sion: time. Dynamic scanning techniques are being developed to
acquire such 4D data from patients as a beating heart, brain firing
patterns of the thought process, or movement of a fetus during 3D
ultrasound. As the hardware is developed to visualize these data in
real-time there comes the challenge to make such systems easy to
interface and convenient to use. With the onslaught of 3D and 4D
information comes the challenge of visualizing and manipulating it
to foster greater practical understanding.

�http://www.cvc.sunysb.edu

Visualization of 3D medical data (e.g., an MRI scan of a pa-
tient gastrointestinal tract), is typically accomplished through either
slice-by-slice examination or multi-planar reformatting, in which
arbitrarily oriented slices are resampled from the data. Direct visu-
alization of 3D medical data is often a non-interactive procedure,
despite advances in computer technology. Advanced and expen-
sive graphics hardware for texture mapping allows preview-quality
rendering at interactive rates using texture resampling [7]. For in-
creased realism, interactive shading can be incorporated for a slight
performance cost [10, 12].

Special purpose hardware for volume rendering is just now ap-
pearing in commercial form. Meissner et al. [23] developed hard-
ware based on off-the-shelf digital signal processing (DSP) and
field programmable gate array (FPGA) components capable of in-
teractive volume rendering using a single PCI board. Cube-4, de-
veloped at the State University of New York (SUNY) at Stony
Brook, is an architecture capable of scalable volume rendering suit-
able for implementations ranging from a single chip up to multiple-
VME boards [26]. Cube-4 Light [5] added perspective projection
capabilities to the architecture. A close derivative of it was im-
plemented by Japan Radio Co. for inclusion in a 3D ultrasound
machine. Mitsubishi Electric implemented a cost effective version
of Cube-4 as a single board, called VolumePro, capable of 30Hz
rendering of2563 datasets with full Phong shading and interactive
classification. Additional details can be found in Section 2.

Several application programming interfaces (APIs) have been
proposed to standardize volume rendering interfaces [4, 11, 21, 28],
although none are designed for dedicated volume rendering hard-
ware. We developed our system around the Volume Rendering
Library (VLI) distributed by Mitsubishi to support the VolumePro
rendering board. VLI supports basic volume rendering functions
and manipulation of rendering parameters, much like OpenGL sup-
ports attributed primitive rendering. On top of VLI we designed a
software developers’ kit for Cube-4, the Cube Toolkit (CTK), in or-
der to ease the burden of designing a working system (see Figure 1).
The CTK supports flexible volume rendering with VLI combined
with the concept of an OpenInventor-like scenegraph. Although
SGI’s Volumizer supports volume rendering, it does not support the
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Figure 1:System-level diagram for an application of the interactive
volume visualization system.
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Figure 2:Intermixed rendering of a radiation treatment beam with
a sampled MRI head.

new breed of high quality volume visualization hardware now com-
ing to market.

We demonstrate in Section 5 the CTK with a virtual colonoscopy
application, however, the CTK is flexible enough to support other
applications. For instance, a radiation treatment planning system
could be designed using the CTK. The CTK allows interactive mix-
ing of geometric radiation beams with the volumetric organ. An
engine can compute the effect of the composite beams on the tu-
mor and surrounding tissue and output a dynamic volume of the
resulting therapy. The intermixed visualization of all this data is
facilitated by the CTK (see Figure 2). Another potential applica-
tion is a voxel-based flight simulator. Such an application would
contain voxelized terrain, volumetric clouds and fog, voxelizedcul-
ture (i.e., man made scenery like houses, buildings, and roads), and
pilot specific information such as target highlights, no-fly zones,
and dangerous airspace. The CTK handles combined rendering of
all these elements as well as coordination for autonomous agents
through engines.

2 Real-Time Hardware

2.1 Cube-4

Cube-4, developed at SUNY Stony Brook, is a pipelined, scalable
volume rendering architecture which provides hardware support for
real-time slice-parallel ray-casting [26]. Others [8, 20, 27] also
used slice-parallel ray-casting on massively-parallel machines, but
did not achieve real-time frame rates. Additionally, Cube-4 does
not require any pre-computation, maintains only one copy of the
dataset, computes Phongillumination for every sample, and reads
each voxel only once per frame.

Figure 3a shows a top-level diagram of the Cube-4 system with
severalCube-4 units. By providing direct connections from each
unit to its dedicatedVoxel memorymodule, Cube-4 solved the
memory-processor bandwidth bottleneck. The data is distributed
and skewed across theVoxel memories. All the Cube architectures
[5, 16, 24, 26] utilize a skewed memory organization to enable con-
flict free parallel access to a row of voxels along any of the ma-
jor axis. GivenM memory modules, a voxel at the 3D position

(x; y; z) is stored at memory modulem = (x+ y + z)modM .
Voxels of each skewed row are fetched and processed in paral-

lel, distributed over allCube-4 units. Cube-4 processes consecu-
tive data slices parallel to thebaseplane, the face of the volume
buffer which is most perpendicular to the view direction. In each
unit pipeline (Figure 3b), after resampling along rays (TriLin), the
dataflow 4 reaches the (Shader) where samples are shaded using cen-
tral difference gradients and Phongillumination. Next, the shaded
samples are composited (Compos) and stored in the (2D memory). Data
for computing a sample along a ray resides in neighboring units,
and the nearest-neighbor connections betweenCube-4 unitsare
used to move the data to theCube-4 unitworking on that ray. Using
the pixel bus, composited pixels are collected by theWarp unitto
warp the baseplane image to the framebuffer image.

Along each ray we compute sample values using tri-linear inter-
polation. Due to the nature of parallel projection, samples in the
same slice have the same weights and therefore we can efficiently
share intermediate results. Hence, interpolation requires only three
multipliers and one row buffer for partially computed samples. Af-
ter reading, the voxels are buffered on chip in two slice buffers such
that they can be used to compute the per sample gradients. Next, we
apply a lookup table based transfer function to acquire sample color
and opacity. The base sample color is modulated by pre-computed
Phongillumination coefficients, indexed by the gradient in a sec-
ond lookup table. The final shadedRGB� sample is then used in a
compositing step whichaccumulates the contributions along all the
ray. Completing computation for all rays yields an image aligned
with thebaseplane. This baseplane image is then 2D-warped onto
the user specified framebuffer image.

To handle datasets with more voxels per row than Cube-4
pipelines, we process partial rows generated by breaking a row into
equal-sized segments. The size of a row segment is equal to the
number of parallel pipelines implemented. Row segments are pro-
cessed sequentially before starting the next full row.

As neighboring pipelines work on neighboring voxels and rays,
only local, fixed communication bandwidth pipeline interconnec-
tions are necessary. A simulation of the architecture on the HP
Teramac configurable custom hardware machine running at about
1Mhz on a1253 dataset with 5 parallel pipelines achieved a frame
rate of 1.6 Hz [15]. A VLSI implementation of the architecture
scales well even for huge datasets. Running at 100Mhz on 16, 128
or 1024 pipelines, datasets of size2563, 5123 and10243 can be
visualized at over 30Hz.

Cube-4 Light [5] improved the algorithm to also allow perspec-
tive projections, but with some view dependent filtering artifacts.
Enhanced Memory Cube (EM-Cube) [24] augmented the skewed
volume storage with a hierarchical blocking scheme which allowed
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Figure 3:(a) High level view of the Cube-4 architecture, (b) Cube-4
unit pipeline.
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it to utilize the burst mode of current SDRAM memory chips.

2.2 Cube-4/VolumePro

Mitsubishi Electric has recently completed the manufacturing of the
VolumePro/vg500 chip and the corresponding Cube-4/VolumePro
board. Being sold under the “RT-Vis” business name,
Cube-4/VolumePro is now available on a low cost PCI board de-
livering the best price/performance ratio of any available volume
rendering system. The heart of Cube-4/VolumePro, a single vg500
chip is capable of delivering 500 million shaded volume samples
per second giving it the ability to render a2563 volume at 30Hz.
The first generation of Cube-4/VolumePro supports 8- and 12-bit
scalar voxels, allowing the visualization of many of todays common
volume dataset formats including 12-bit medical datasets. The de-
sign utilizes fixed point internal data formats. To preserveaccuracy
during rendering, important fields such as accumulated opacity and
shaded RGB values utilize 12 or more bits precision. Like Cube-4,
Cube-4/VolumePro computes a complete Phongillumination equa-
tion at every sample point. It supports weighted summation, mini-
mum intensity, and maximum intensity projection (MIP) as well as
front-to-back compositing.

Cube-4/VolumePro computes central difference gradients simi-
lar to Cube-4. Additionally, however, Cube-4/VolumePro computes
the magnitude of the gradient by first taking the sum of the gradient
vector components followed by a single Newton-Rhapson iteration
to approximate the magnitude. This can be intuitively considered as
a measure of the “strength” of a surface; a high magnitude indicates
a high probability of surface crossing. This magnitude value is used
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Figure 4:Cube-4 pipeline dataflow.

in two ways to alter the sample before it contributes to the final im-
age. First, it can be utilized to modulate the opacity of a sample to
strengthen (or weaken) its contribution to the image, thus highlight-
ing surfaces in low opacity volumetric data. A gradient magnitude
lookup table is utilized to select the amount of modulation from the
computed magnitude. Secondly, the diffuse and specularillumina-
tion coefficients can be modulated. This allows creation of effects
such as a clear, but specular surface in low opacity volumetric data.
The gradient magnitude is used to derive shading coefficients,Gd

andGs, for computing the final sample colorCout according to:

Cout = (ke + (IdGdkd))Csample + (IsGsks)Cspecular

whereke, kd, ks are the emissive, diffuse, and specular coefficients,
Id, Is are the diffuse and specular illumination values,Csample

is the sample color from the color classification lookup table, and
Cspecular is the specular light color.

Cube-4/VolumePro supports supersampling inx, y, and z in
powers of two. This provides higher quality rendering to reduce
artifacts by increasing the number of sample points within the vol-
ume. Supersampling inx andy are implemented by rendering the
volume from the same viewpoint, but shifted by a subvoxel amount
in thex and/ory directions, then interlacing the resulting images
into a large memory buffer. Supersampling inz is accomplished by
repeatedly sampling along the ray in-between two slices.

Although the hardware can only render a single2563 volume
at a time, there are 128 MB of volume storage on the board (5123

8-bit voxels) and, beyond this, arbitrarily large volumes can be han-
dled by the driver software automatically swapping volume data to
and from host memory. The result is that any sized volume can
be rendered at less than 30Hz by cutting it into2563 bricks which
are rendered separately. The resulting brick images are composited
together in image space in the correct order. Also, a subset of a
larger volume can be rendered by restricting the volume traversal to
a cuboid subvolume.

Cube-4/VolumePro hardware implements a flexible and power-
ful arbitrary oriented cut plane. This feature allows it to extract
an arbitrarily thick slice from the dataset at any orientation, as in
multi-planar reformatting of an MRI volume. The opacity of the
voxels within the slice are set to fully opaque and the voxels out-
side are set to fully transparent, while the transition between inside
and outside has a variable width, allowing the voxels in the transi-
tion to be translucent for antialiasing. This variable falloff region
between inside and outside substantially improves the appearance
of extracted slices. Cube-4/VolumePro also supports a 3D cursor,
as either a crosshair or a set of three axis-aligned planes. This fea-
ture makes selection easier and improves spatial relationships when
interactively manipulated.

Cube-4/VolumePro supports anisotropic and gantry-tilted
datasets by adjusting the rays as they traverse the volume dataset.
Since this changes the inter-sample distance along each axis, the
opacity values are corrected by a lookup table to represent the
proper opacity for the corrected inter-sample distance.

A single vg500 chip is an application specific integrated circuit
(ASIC) with approximately 3.2 million logic transistors and 2 Mbits
of on-chip SRAM. It is fabricated in 0.35� technology and runs at
133 MHz clock frequency. The Cube-4/VolumePro board is or-
ganized with one vg500 chip, between 4 and 16 volume memory
SDRAMs, two section memory SDRAMs, and two pixel memory
SDRAMs. The Cube-4/VolumePro algorithm requires an image
warp after volume rendering which is achieved by the texture map-
ping hardware on a standard 3D graphics board. Figure 5 shows
a picture of the first generation Cube-4/VolumePro board with the
vg500 rendering chip.
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3 Volume Rendering Libraries

3.1 VLI

The Cube-4/VolumePro system provides a Volume Library Inter-
face (VLI) to access all the features of the vg500 chip in a pro-
grammer friendly manner. The VLI API consists of a number of
C++ classes, such as a volume class used to load and render a
volume. VLI, unlike prior volume rendering APIs, provides pow-
erful means to manipulate the advanced shading abilities of the
Cube-4/VolumePro board. Several classes represent rendering el-
ements such as lights, cut planes, cropping, color lookup tables,
the rendering context, and cameras. A description of some of the
classes follows:

VLIVolume Manages volume data handling tasks such as voxel
data storage, voxel data format, and transformations to the
volume data such as shearing and scaling.

VLIContext Contains and provides manipulation of rendering pa-
rameters, and methods for rendering volumes using these pa-
rameters. These parameters include one or more of each of the
following: lookup table, camera, cropping, cut plane, light,
and cursor.

VLILookupTable Defines the lookup tables that contain the color
and opacity values to be mapped to the volume. Also used to
specify gradient magnitude opacity modulation and gradient
magnitude intensity modulation lookup tables.

VLICamera Defines the viewing parameters of one or more cam-
eras, which are stand-ins for the user in viewing the object
being rendered.

VLICrop Defines the cropping characteristics, if used, for the ren-
dering process. The VLI supports one crop box.

VLICutPlane Defines the characteristics of a cut plane. The max-
imum number of cut planes is board-specific.

VLILight Defines a light that illuminates the scene.

VLIGraphicsContext An abstract class specifying the interface
between VLI and a native graphics system.

3.2 CTK Overview

Although VLI provides a powerful interface for volume rendering,
it still requires tedious custom coding to achieve a working system.

Figure 5: A picture of the Mitsubishi Electric Cube-4/VolumePro
board with the vg500 rendering chip.

Our software developers’ kit for Cube-4 the Cube Toolkit (CTK),
provides an easier method to achieve a working system. In addi-
tion, as an object oriented C++ library, CTK provides a flexible
set of tools which can be combined in interesting ways for high
level control and automation. CTK was implemented in object ori-
ented C++ on a standard PC running Windows NT, since personal
computers are widely available and affordable compared to work-
stations running Unix. The basic support for engines was adapted
from Apprentice, a free implementation of OpenInventor.

The CTK organizes a virtual scene as a collection of nodes in
a directed, acyclic graph. The scenegraph can be specified either
programmatically or through a simple scripting language, similar
to VRML. The topmost node, a Separator, contains all other nodes
in the scene. Like OpenInventor, the graph is traversed depth first
and state changes only affect children and right siblings. Nodes rep-
resent either volumetric imagery and visible geometry, or attributes
that affect the rendering of the scene.

The user of the CTK builds a scenegraph which is automatically
rendered into a window. The CTK provides default viewer func-
tionality to allow simple examination of the scenegraph. A scene
may be composed of multiple volumes, parallel or perspective cam-
eras, lights, intermixed polygons, and clipping planes, among oth-
ers. Since VLI currently supports only parallel projection of a sin-
gle volume, the CTK provides methods to organize all the geomet-
ric primitives and render them into a final composite frame. Fur-
thermore, the CTK has engines that allow flexible and creative con-
trol over any node in the scenegraph.

3.3 CTK Classes

Most of the VLI classes have been wrapped into CTK nodes. Many
other nodes provide additional interactivity and functionality, such
as engines. A sample of the complete CTK class tree is given in Fig-
ure 6. All classes that may be instantiated into the scenegraph are
derived from the Node class. Below is a description of some of the
classes:

CtkVolume The CTK volume node wraps the VLI volume class
in order to provide additional functionality. The CTK volume
node can read and write multiple voxel formats from a file or
can read 4D data from a live source. It also provides high
level functions such as morphological operators (e.g., erode,
dilate, floodfill, binary logical operators) and statistical tools
such as a histogram. A histogram is useful for determining
pseudocolor mappings and opacity transfer functions.

CtkLookupTable VLI maintains multiple lookup tables to clas-
sify and render the volume data. Encapsulating these in CTK
nodes allows simple, dynamic modification of lookup tables.
For example, an engine can be created that generates an iso-
surface classification transfer function lookup table based on
a scalar value specifying the isovalue. Another possibility is
to create random color mappings as a function of the mouse
coordinates, to perform a stochastic search for an appropriate
transfer function (e.g., [13, 22]). Lookup tables can also be
edited manually using a mouse based tool.

CtkEngine Engines are used to implement dynamics in a scene-
graph. Engines take some input from external events and
scenegraph nodes, compute some function, and output some
quantities to othernodes. A simple engine might take as input
the current simulation time and outputs a single scalar value
as some computed function of time. This can be routed into
a transformation node to accomplish simple rotation about
some axis. The output of an engine can be a more complex
quantity, practically anynode or nodal parameter in a scene-
graph. Examples of the output of an engine are:
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� a 3D vector controlling the cursor,

� a 4D vector defining the cut plane or describing the size
and direction of a glyph (e.g., the amount of blood flow
in a particular volume region),

� a data array such as a color and opacity transfer func-
tion, or

� a more complex data value such as a 3D matrix
(e.g., a volume representing fracture probabilities in a
bone computed by a volumetric finite element simula-
tion [30]).

Engines can also be written to automatically generate levels
of detail of a volume or to perform marching cubes isosurface
generation.

CtkCropBox While VLI supports a single crop box per volume,
the CTK allows multiple crop boxnodes to be active within
the scenegraph. The scenegraph automatically combines the
multiple crop boxes and renders the correct complex volume
region. This is useful for rendering an L-shaped region of a
volume, for example. By encapsulating cropping as a node,
it allows cropping to be simply specified in a script file and
allows dynamic change of properties through engines.

CtkCutPlane The cut plane allows arbitrary planar sectioning of
the visible volume. The CTK cut plane node encapsulates the
VLI functionality and opens up all the parameters todynamic

CtkNode

CtkShape

CtkSeparator

CtkCamera

CtkClipping

CtkLight

CtkTransform

CtkEngine

CtkAppearance
CtkSensor

CtkCallback

bounding box

dynamic

CtkVolume
box clip

CtkSurface
type

texture
CtkCursor

crosshair,
CtkSwitch

CtkLevelOfDetal

parallel, perspective

CtkVolume

CtkSurface

CtkLookupTable

density
color

input

output

function

color
position
direction
type

directional
point
spot

CtkWindow

image

CtkRenderer

accuracy/time tradeoff

root node

user-supplied,
piecewise function

FTB, MaxIP
MinIP,

scalar, vector,
shape, appearance

WGTSUM
CtkCropBox

CtkCutPlane
CtkCropBox

plane

gradient
magnitude

Figure 6: Sample selection from the complete CTK class tree:
CTK classes are prefixed with “Ctk”; those in bold are departures
from standard OpenInventor classes. Some sample data members
are shown in lowercase. Arrows represent C++ class inheritance,
while lines represent class members.

change through engines. For instance, the location of a multi-
planar reformatted slice can be easily connected to the output
of the mouse or other control device.

CtkCursor VLI allows the insertion of a hardware rendered 3D
cursor into the volume dataset. The CTK encapsulates the
VLICursor class to manage the cursor automatically to allow
mapping it to the mouse or other input device.

CtkAppearance The appearance nodes control attributes related
to the visual presentation of the scenegraph. For instance,
the volume appearance node controls the current style of vol-
ume rendering (e.g., maximum intensity projection, minimum
intensity projection, weighted summation, or front-to-back
compositing)

CtkWindow The Window class is not a node in the scenegraph,
but contains a scenegraph root node. It handles user interface
functions, like mouse input, and automatic rendering of the
scenegraph.

4 CTK Algorithms

4.1 Perspective Rendering

VLI currently supports only parallel volume projections, yet some
applications require perspective projections. For instance, in a
colonoscopy application, in which the user is normally viewing
along a tubular structure, parallel projection compresses a straight
tube into a 2D ring, while perspective creates a view which allows
the user to see the interior walls of the tube. To enable perspec-
tive rendering, a perspective camera node is added to the scene to
replace the default parallel camera. The CTK handles perspective
volume rendering using a slabbing technique.

In the slabbing technique, the volume is partitioned into slabs
of slices aligned either along a major volume axis or parallel to
the image plane. Figure 7 illustrates this process using three axis-
aligned slabs. The perspective scaling of each slab is handled by
the texture mapping of the graphics card. Since the slab images are
drawn from back to front, we blend them into the framebuffer using
� channel compositing. Their position in depth is set to the center
of the slab which they represent. Obviously, a large number of thin
slabs are required when the perspective distortion is great.

Parallel ray casting
by Cube-4/VolumePro

Perspective baseplane
blending by texture

mapping on graphics
board

Final image

1

2

3

Figure 7:Approximation of perspective volume projection be ren-
dering slabs using parallel volume rendering hardware and blend-
ing the slab images perspectively on the graphics card.
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Slab thicknesses are selected to trade off between quality (with
a large number of thin slabs) and speed (with a small number of
thick slabs). The Cube-4/VolumePro system is limited to process-
ing cuboid subvolumes (blocks) with borders that are multiples of
32 voxels. Thus, once slabs are less than 32 voxels thick, increas-
ing the number of slabs by factorf increases the volume process-
ing time by up tof times. Additionally, there are more slab images
to transfer between the Cube-4/VolumePro board and the texture
memory.

Drawing fewer slabs introduces artifacts into the image when
viewing the volume close to 45 degrees from a baseplane. The pro-
jection of the slab images creates artifacts on the edges of the slabs
when adjacent slabs are projected more than one pixel apart, cre-
ating noticeable steps in sharp edges. These artifacts can be elim-
inated if the slabs are parallel to the image plane. Unfortunately,
rendering non-axis-aligned slabs requires processing the complete
axis- and block-aligned bounding volume of the slab. This over-
head, shown as the lightly shaded region in Figure 8, is maximized
when viewing diagonally from a corner. Depending on the user’s
preference, the CTK can choose either image- or axis-aligned slabs
to provide an accuracy/speed tradeoff.

Since perspective distortion shrinks objects in the distance, it
also shrinks the errors in the distance. This allows us to use the
principles of adaptive perspective volume rendering [17] to adap-
tively modify the slab thickness along the viewing direction with
constant error bounds. For example, a slab in the back that is twice
as far from the viewpoint as a slab in the front projects to half the
size; thus, it can be twice as thick and still have the same amount
of error. For perspective viewing with a large field of view, this
optimization technique can relieve much of the work for the geom-
etry processor, although the volume processor must still process the
same amount of data.

4.2 Overlapping Volumes

In a dynamic scene, the moving volumes can easily come across
and overlap with each other. It is very important to support the
rendering of multiple overlapping volumes. Consider the scenario
in which smoke rises up through a cloud, or a radiation therapy
beam penetrates a sampled human dataset (Figure 2). Clearly, two
overlapping volumetric objects cannot be rendered separately with
the images combined. In traditional ray casting algorithms, samples
from different volumes interlace with each other and composite in
order. For each sample, the color value is obtained by interpolation,
classification, and shading. However, Cube-4/VolumePro can only

volume

cut plane

multiple active 
subvolumes

single active 
subvolume

Figure 8:Using multiple subvolumes toapproximate a slab.

render a single volume at a time.
Our CTK supports rendering of overlapping volumes. When ren-

dering a scenegraph, the CTK traverses the whole scenegraph and
computes the intersection of volume bounding boxes. If multiple
volumes intersect each other, the CTK enables the overlapped ren-
dering mode and renders the volumes correctly.

Figure 9 illustrates this approach by rendering a sphere overlap-
ping with a cubic volume. Similar to perspective rendering, we cut
each volume into slabs, then we interlace and blend them together
to form the final image.

For the best quality, all slabs have to be parallel to the image
plane. An improved speed algorithm renders the scene aligned with
the largest (anchor) volume. The anchor volume is rendered using
efficient cropping while the others are rendered using cut planes to
align them with the anchor volume slices. Figure 9 shows an exam-
ple of overlapping volumes with the sphere as the anchor volume.

4.3 Mixing Geometry

This method of interlacing slab images of different objects can also
be used to properly intermix both opaque and translucent geometry
with the volumetric data [18, 19]. For opaque polygons, the geome-
try is rendered into the framebuffer, then the slab images are drawn
with z-depth test to correctly occlude the volume samples behind
the geometry. For translucent polygons, the polygons between each
slab image are drawn in between texture mapping the individual
slab images. This way, all contributing objects are composited in
the correct order.

4.4 Rendering a Slab

To generate the slabs, the active subvolume which encloses the
current slab is created and a thick cut plane is set up on the
Cube-4/VolumePro board. Cube-4/VolumePro requires the active
subvolume to be on 32 voxel boundaries. Figure 8illustrates a
top view of a diagonal thick cut plane with its enclosing subvol-
ume. Rendering this subvolume processes many voxels that are
very distant from the cut plane. Therefore, the CTK partitions the
subvolume into multiple smaller subvolumes which still enclose
the slab, but cover less voxels. In our example of Figure 8, these
smaller subvolumes appear in a darker grey compared to the single
active subvolume. Unfortunately, rendering these multiple subvol-
umes requires multiple passes (one foreach subvolume) and thus,
the baseplane image has to be fetched and texture mapped multiple
times. The CTK evaluates these tradeoffs and chooses a partition-
ing scheme depending on the angle such that the overall rendering
time is minimized.

Adjusting the thickness of each slab gives another tradeoff be-
tween image quality and the rendering speed. Axis-aligned, wide

slicing inter-
lacing compositing

slicing

Figure 9:Rendering overlapping volumes in CTK.
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Texture
mapping

Original volume Composite volume

Figure 10: Texture map each slab image onto multiple geometry
planes for compositing.

slabs achieve the greatest speed, but result in the aforementioned ar-
tifacts for diagonal viewing angles. We can alleviate these artifacts
without increasing the burden for the Cube-4/VolumePro hardware
by texture mapping the slab image onto multiple geometric planes,
as depicted in Figure 10. This requires reducing the� values of the
computedRGB� slab image. This is done by appropriate modifi-
cation of the� values of the slab polygon during texture mapping
of the polygon. On the geometry processing side, this requires an
increased texture mapping fill rate, but not as much as it would
seem, because this technique is used only when the slabs are more
oblique to the viewer so that the slab images project to smaller areas
on the screen. Based on the ultimate frame rate, the CTK evaluates
these tradeoffs and determine both the thickness of a slab to render
and the number of planes onto which a slab image can be texture
mapped.

5 Virtual Colonoscopy Application

Colon cancer is the second leading cause of cancer death in the
USA. Previously, optical colonoscopy and barium enema were the
only two procedures available for examining the entire colon to de-
tect polyps larger than5mmin diameter (i.e., those that are gen-
erally malignant). Optical colonoscopy is an invasive procedure
which requires intravenous sedation, takes about one hour, and is
expensive; barium enema requires a great deal of the patient’s phys-
ical cooperation, and has a low sensitivity (78%) in detecting polyps
in the range of 5mmto 20mm.

Virtual colonoscopy is a non-invasive computerized medical pro-
cedure for examining the entire colon to detect polyps. We have
developed an interactive virtual colon navigation system at SUNY
Stony Brook [14]. The interactive navigation plots a centerline
course from end to end of the colon and defines a potential field.
Then, the user’s viewpoint is automatically guided along the poten-
tial field while avoiding the walls and allowing the user to look and
steer toward sites of interest along the way. By using CTK engines,
we can automate the guided navigation function into an engine. The
engine can take as input a colon volume and the user’s steering input
and provide output of a camera node. The morphological features
of the CtkVolume class are used to help determine the centerline of
the colon.

In our original virtual colonoscopy system [14] using conven-
tional graphics hardware, the colon was represented as a polygonal
surface. Therefore, physicians could not use it to explore tissues
inside a polyp in order to differentiate between benign and ma-
lignant structures. A direct volume rendering technique can meet
physicians’ demand by omitting the intermediate geometric repre-
sentation and directly mapping certain ranges of sample values of
the original volume data to different colors and opacities. Volume
rendering provides smoothering rendering and the ability to peer
into the colon wall. This “virtual biopsy” technique is superior to

            

Figure 11:Polyp (left center) found during navigation in a patient’s
virtual colon.

surface-based techniques, allowing the physician to confirm possi-
ble abnormalities without physical biopsy or surgery.

Unfortunately, volume rendering is very expensive, especially
for high resolution colon datasets. Further efforts have been dedi-
cated to accelerate software volume rendering using a depth buffer
to skip the empty space inside the colon [?]. The depth buffer
was obtained from reading thez-buffer after the surface rendering.
However, the performance achieved still did not meet the interac-
tive speed requirement. Generating a frame of a patient colon takes
an average of 1–2 seconds on an SGI Challenge using nine proces-
sors. Therefore, volume rendering is used only to supplement the
surface rendering as a detailed study and analysis of the sub-surface
tissues.

We wish to utilize Cube-4/VolumePro and the CTK to ac-
celerate our virtual colon navigation. However, direct usage of
Cube-4/VolumePro will not meet our interactive colon navigation
requirement. The patient colon data is usually too large (e.g.,
5123 resolution, to be rendered interactively). In addition, per-
spective projection is critical for interior colon navigation, but
Cube-4/VolumePro currently supports only parallel projection.

Here we present a group of techniques to allow interactive nav-
igation inside a large human colon dataset with perspective pro-
jection. We achieve this by taking advantage of the twisted na-
ture of the colon. As a preprocessing step, we first approximate
the colon shape with a sequence of piecewise boxes. Then, at a
particular view position, we use a scheme calledwindow closing
to detect the visible boxes within the current viewing frustum so
that we only send subvolumes defined by these visible boxes to
Cube-4/VolumePro for rendering. To perform perspective render-
ing, we use the CTK as discussed in Section 4.1.

5.1 Piecewise Boxing of the Colon

We use a sequence of connected boxes to encapsulate the colon,
where every box defines a subvolume of the colon volume, as
shown in Figure 12a. We generate boxes such that each box in-
tersects the colon on no more than two faces. For each intersecting
face, we further approximate the exact intersection with a rectangle
and call it aportal. Consequently, there are two portals for each
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Portals

(a) (b)

Portals

Figure 12:Approximating a twisted colon structure with a sequence
of boxes.

Aggregate cull window
Current cull window

Portal projections
on the screen

Screen boundary

Figure 13:Visibility detection through window closing algorithm.

box. Figure 12b shows a top view of the piecewise boxing of a
colon. All these boxes are on the 32-voxel boundary of the vol-
ume as required by Cube-4/VolumePro subvolume rendering. The
darkened segments indicate portals of the boxes.

5.2 Window Closing Visibility Detection

Once we have generated these boxes, we can quickly compute dur-
ing navigation which boxes are in the current viewing frustum. We
propose the Window-Closing algorithm for such visibility detec-
tion. The algorithm begins from the closest box to the view point,
and computes an axis-aligned rectangular window, called theaggre-
gate cull window(ACW), which defines the window through which
we can see other boxes behind it. If the ACW has not degenerated
yet, we add in the next adjacent box and update the ACW. We con-
tinue this procedure until ACW is degenerated. Figure 13 illustrates
the procedure.

We project the vertices of the initial portal onto the screen and
compute the 2D axis-aligned bounding rectangle of the projected
vertices. This bounding rectangle, called thecurrent cull window
(CCW), is used as the initial ACW. The CCW represents a conser-
vative bound of the portal for efficient computation of the intersec-
tion between the ACW and CCW. When a new box is added in, we
update the ACW by computing the intersection of the CCW of the
added box and the previous ACW. Figure 13 shows the final ACW

after projecting three boxes.
There are two ways to decrease the ACW size more quickly so

that the rendering terminates earlier. One technique is to gener-
ate more portals inside each box to better capture the shape of the
colon. However, this can increase the expense of ACW evaluation
because we have to project more portals. Another technique is to
check the framebuffer image of each subvolume inside the ACW; if
it contains rows of opaque pixels, we can shrink the ACW accord-
ingly. The expense of this operation is the access to the framebuffer.
If we perform this operation for every subvolume, it can be very
expensive. Therefore, we only perform additional pixel checking
when the ACW size is smaller than a certain threshold. These two
methods are dynamically combined for the most effective ACW re-
duction.

5.3 Image-Based Rendering

To guarantee interactivity, we provide an image-based rendering
scheme to accelerate the rendering. We cache the slab images and
reuse them for the generation of novel frames [9], similar to [6]. To
decide whether to re-render or reuse the images of the subvolumes,
we need to define and compute a priority value of each subvolume.
Since our eyes attend to the near object more than the distant object,
the priority of each subvolume decreases as it moves further away
from the view point. For the near subvolumes, we re-render them
in every frame; for the distant subvolumes, we can cache their slab
images and reuse them for new frame generation. For the newly
visible subvolume, we have to render it because there are no slab
images available for it.

In addition, there is another related optimization we can exploit.
For each subvolume that we need to re-render, we can specify a dif-
ferent rendering quality so that the CTK chooses the proper thick-
ness of the slab to render, as discussed in Section 4.4. The rendering
quality of a subvolume is specifiedaccording to its assigned priority
value.

6 Conclusions

The forthcoming availability of commodity volume visualization
hardware such as Cube-4/VolumePro, is ushering in a new set of vi-
sualization applications. Such affordable interactivity enables prac-
tical, clinical use of visualization which was previously unavailable.
For example, direct visualization of CT data with interactive view-
point modification and classification are now possible on a stan-
dard PC. Our challenge is to create an efficient means to effectively
harness the new found power in order to create visualizations that
foster greater understanding.

Our Cube Toolkit (CTK) provides a convenient means to spec-
ify and interact with dynamic volumetric (and intermixed geomet-
ric) scenes. It provides flexible processing engines to allow in-
teresting applications such as radiation treatment planning, virtual
colonoscopy, and flight simulation. We described some novel algo-
rithms for approximating perspective volume projection using par-
allel volume rendering hardware and mixing overlapping volumes
or geometry.

We also discussed a new algorithm for hardware volume render-
ing of tubular colon structures using a series of piecewise boxes
with intelligent visibility determination. Finally, we have shown
how the CTK can be applied to generate the practical and lifesav-
ing application of virtual colonoscopy.
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