
To appear in the 1998 Symposium on Volume Visualization

Adaptive Perspective Ray Casting

Kevin Kreeger, Ingmar Bitter, Frank Dachille, Baoquan Chen, and Arie Kaufman�

Center for Visual Computing (CVC)
and Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11749-4400, USA

Abstract

We present a method to accurately and e�ciently perform per-
spective volumetric ray casting of uniform regular datasets,
called Exponential-Region (ER) Perspective. Unlike previous
methods which undersample, oversample, or approximate the
data, our method near uniformly samples the data through-
out the viewing volume. In addition, it gains algorithmic ad-
vantages from a regular sampling pattern and cache-coherent
read access, making it an algorithm well suited for imple-
mentation on hardware architectures for volume rendering.
We qualify the algorithm by its �ltering characteristics and
demonstrate its e�ectiveness by contrasting its antialiasing
quality and timing with other perspective ray casting meth-
ods.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation|Display algorithms; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Re-
alism; I.4.2 [Image Processing And Computer Vision]:
Enhancement|Filtering;

Keywords: Volume rendering, Perspective ray casting,
Adaptive supersampling, Volume rendering hardware

1 Introduction

Volume rendering is a method for visualizing three dimen-
sional datasets. For realistic visualizations, perspective pro-
jections are required unless the viewer's eyepoint is far away
from the object being examined. Currently, however, the
use of perspective projection either increases the rendering
time or decreases the projected image quality. Meanwhile,
users' expectations for image quality and speed continue to
rise.
Algorithms for volume rendering generally fall into two

categories: image-order (e.g., ray casting [7]) and object-
order (e.g., splatting [13] or shear-warp [6]). Image-order
algorithms are generally thought to produce higher quality
images than object-order. However, perspective projections
present inherent challenges when performing ray casting.

�fkkreeger,arig@cs.sunysb.edu

For parallel projections, the rays that are cast through the
volume maintain a constant sampling rate on the underly-
ing volume data. It is straightforward to set this sampling
rate to create an output image of the required quality. For
perspective projections, however, the rays do not maintain
such a continuous and uniform sampling rate. Instead, the
rays diverge as they traverse the volume from front to back.
This creates an uneven sampling of the underlying volume.
Naive ray casting algorithms generally handle ray divergence
by one of two methods. The �rst method is undersampling,
in which rays are cast so that the sampling rate at the front
of the volume is appropriate for the desired image quality.
However, because of the perspective ray divergence, the un-
derlying volume is undersampled. This may result in severe
aliasing by creating \holes" in the rear of the volume where
regions of voxels remain unsampled. The second method is
oversampling, in which rays are cast so that the sampling
rate at the rear of the volume is appropriate for the desired
image quality. This approach avoids the aliasing of the �rst
method; however, the volume may be radically oversampled
in the front. The ine�cient oversampling in the front of the
dataset dramatically increases the runtime of this method.
Of course, the rays can be cast with a sampling rate between
undersampling and oversampling. This results in a tradeo�
between the image quality of oversampling and the rendering
speed of undersampling.

Others have addressed the problem of nonuniform sam-
pling due to perspective ray divergence during volume ren-
dering. Levoy and Whitaker [8] proposed using a 3D-
mipmap representation of the underlying volume data to cre-
ate larger sampling kernels when the rays diverge. However,
this method adds a level of blurring before the sampling.
Furthermore, the use of non-linear mapping from density-
to-color may result in incorrect color being assigned to a
region of averaged voxel densities. Swan et al. [12] pre-
sented a similar approach for splatting. Novins et al. [9]
proposed an adaptive sampling technique in which rays split
into four child rays once the neighboring rays diverge past
some threshold. Adaptive sampling ensures that the sam-
pling rate remains close to the density of the underlying
volume (in fact within the threshold value) without blurring
the data and still allowing arbitrary density-to-color map-
pings. Kreeger et al. [5] proposed two back-to-front merg-
ing algorithms similar to Novins et al.'s splitting approach.
The �rst utilized local neighborhood information to decide
when to merge two rays, while the second algorithm utilized
global information to decide which rays were permitted to
merge. However, both algorithms su�ered from irregular ray
resampling patterns.

Bitter and Kaufman [1] proposed a perspective projec-
tion method for the Cube-4 Light volume rendering hard-
ware. Their method resamples the compositing bu�er for
each volume slice. While this regular resampling operation

To appear in the 1998 Symposium on Volume Visualization

allows the characterization of the �lter as a Gaussian, the
�lter is view angle dependent and spans up to half as many
voxels as there are slices in the image for the worst-case
of 22.5 degree ray projections. More recently, Brady et al.
[2] proposed a two-phase approach which also attempts to
sample the volume at a rate near that of the underlying vol-
ume. This method divides the viewing frustum into regions
based on Euclidean distance from the eyepoint. The dis-
tances used as region boundaries are left to be speci�ed by
the user. The algorithm then ray casts each region sepa-
rately with a ray density near the underlying volume resolu-
tion. The images created from the regions are subsequently
composited by texture mapping hardware. This algorithm
is designed for accelerated rendering of large volumes at the
expense of purely ideal sampling and �ltering. The authors
report that when some of the regions are reused to speedup
the rendering of subsequent frames, the error from sample
approximations becomes di�cult to characterize.
To eliminate the random access of volume data during

depth-�rst perspective ray casting, many researchers have
proposed to process the volume in a breadth-�rst slice-
order fashion, thereby taking advantage of cache coherency
[9, 6, 5]. Kaufman and Bakalash �rst introduced slice-order
processing in 1985 [4] followed by Drebin et al. in 1988 [3]
who proposed to have the slices correspond with a scanline
in the �nal image. However, they both required rotating the
volume | a process which may take longer than the ren-
dering may take and require twice the memory | so that
a slice-by-slice orthographic projection could be performed.
Current slice-order volume rendering methods do not require
the rotation stage; they cast rays at non-orthographic pro-
jections, but still access the data in a slice-by-slice fashion.
This powerful method is used by the Cube volume render-
ing architectures to achieve real-time frame rates with high
image quality [11, 1, 10].

2 ER-Perspective Ray Casting

2.1 Overview

We propose an algorithm, ER-Perspective (Exponential Re-
gions Perspective), for performing perspective projections
of uniform regular datasets by adaptively sampling the un-
derlying volume. Our algorithm provides extremely good
antialiasing properties associated with oversampling while
giving runtimes on the order of undersampling. Further-
more, it creates at least one sample for every visible voxel
in the volume. ER-Perspective gains a runtime advantage
over previous work [9, 2, 8] by utilizing slice-order voxel ac-
cess, while maintaining equal or better image quality. (See
Section 4 for details contrasting our algorithm to others.)
Figure 1 compares our ER-Perspective algorithm with un-
dersampling for an LGN neuron dataset obtained from a
confocal microscope scan. Figures 1(c) and 1(d) show a por-
tion of the image blown up 4 times.
Our ER-Perspective algorithm works by dividing the view

frustum into regions based on exponentially increasing dis-
tances from the eyepoint. We cast continuous rays from
back-to-front (or front-to-back) and merge (or split) the rays
once they become too close (or too far) from each other. (We
limit the discussion in this paper to the more intuitive case of
back-to-front with merging. The di�erences are pointed out
where they are signi�cant.) We use the region boundaries
to mark the locations where the rays should be merged. By
de�ning the regions and merging all rays at the boundaries,
the algorithm provides a regular pattern of ray merging that

Figure 1: LGN neuron rendered by (a) Undersampling, (b)
ER-Perspective. (c) and (d) are the area in the square blown
up 4 times.

is dependent on the global geometry instead of local neigh-
borhood conditions. Additionally, an odd number of rays
are merged such that the resulting ray is an exact contin-
uation of the previous center ray. This is an advantage of
our approach over previous methods. It allows us to qualify
the algorithm by characterizing the �ltering achieved when
adaptively sampling the volume (see Section 3.1).
The base sampling rate of the algorithm can be set accord-

ing to the desired image quality. The base sampling rate is
the minimum ray density compared to the underlying vol-
ume resolution. (Although the ER-Perspective algorithm
supports any sampling rate, for the remainder of this paper
we assume that it is 1 ray per voxel.) The algorithm has
the advantage of keeping the ray density between 1 and 2
times the base sampling rate. This guarantees that no vox-
els are missed in the rear of the volume and places an upper
bound on the total amount of work performed at two times
supersampling.
Since we utilize slice-order processing, we project the vol-

ume onto the baseplane of the volume which is most perpen-
dicular to the view direction. The baseplane image is then
warped onto the �nal image plane in the same manner as in
shear-warp [6] or Cube-4 [11].
One of the major driving forces of the algorithm was to

develop a method which could map to a hardware architec-
ture. Speci�cally, we strived to create an algorithm which
only required nearest neighbor communication between pro-
cessing elements. While processing a row of voxels on a
one-dimensional array of processing elements, our algorithm
only requires processing elements to communicate with their
immediate left and right neighbors.

2.2 Exponential Region Selection

Our algorithm uses slice-order processing along one of the
three major axes. Consequently, we de�ne the regions in
our algorithm as slabs of slices along the major projection

2

To appear in the 1998 Symposium on Volume Visualization

View Point

Z = 3

Region
Boundaries

Z = 6

Z = 12

Z = 24

Z = 0
Z

XY

View
Frustum

8

4

2

1

e = 3z

Figure 2: Exponential region boundaries in voxel units. The
two perspective rays have the desired property that they are
twice as far apart at the rear boundary of each region as they
are apart at the front boundary of each region.

axis. (For the remainder of the paper we assume that the
volume is being projected along slices perpendicular to the
Z-axis.) Speci�cally, we take the distance along the Z-axis
from the viewpoint to the front of the volume and create the
�rst region to consist of as many Z-slices as this distance.
Each successive region after the �rst one is twice as deep as
the one before it.
To illustrate, if the viewpoint is 3 voxel units in front of

the volume, then the �rst region is 3 voxel units thick, the
next is 6 voxel units thick, etc. In general, the i-th region
is ez � 2

i slices thick, where ez is the distance from the view-
point to the front of the volume (see Figure 2). Forcing the
regions to be thus de�ned produces the desired e�ect that
any two perspective rays shot through any of the regions are
twice as far apart at the rear boundary as they are at the
front boundary. This is shown in Figure 2 as the distance
between the two rays grows from 1 to 2 across the �rst re-
gion, then to 4, and �nally to 8 at the rear of the last region.
Additionally, since the region boundaries are dependent on
the global geometry, the e�ciency of the ray casting algo-
rithm is maximized by providing a mechanism for keeping
the ray density between 1 and 2 times the underlying vol-
ume resolution in each dimension. It also creates a regular
topology so that the �ltering of the data can be controlled
as perspective rays are cast.

2.3 Ray Density Resampling

Having regions with boundaries at exponential distances
produces ray density twice as high at the front as at the
back of the region. Therefore, we must provide a mechanism
to adjust the ray density when crossing a region boundary.
Since each ray starts on a voxel coordinate at the rear of a
region, at the front of the region every second ray in each
dimension will, once again, coincide directly with a voxel
coordinate. The remaining rays intersect the region bound-

1 2 1 00
2 4 2 00
1 2 1 00

0 0 0 00

0 0 0 00

1.0
0.5

0.0

1.0

0.5

0.0

Horizontal
Weights

Vertical
Weights

16 16 16

16

161616

16 16

Figure 3: 2D �lter of size �2 samples. The �lter is a linear
ramp in each dimension. To generate a 2D �lter, the weights
are multiplied and then normalized.

ary halfway between two voxel positions. To downsample
the ray density with this deterministic ray pattern, we use a
2D Bartlett �lter (also known as tent or triangle �lter) with
an extent of �1 voxel unit in each dimension [14]. Because
the ray density at the front of each region is twice the voxel
density, this 3� 3 voxel neighborhood is intersected by 5� 5
rays. Since the edges have a weight of zero (see Figure 3),
only the 3 � 3 neighboring rays are used for applying the
�lter to downsample the ray density. This e�ectively merges
neighboring rays. The Bartlett �lter was chosen over a sim-
ple box �lter for the added quality it produces in the �nal
image. (See Section 3.1 for our analysis of the cascading of
local Bartlett �lters.) For front-to-back processing, rays are
split instead of merged. Here a bilinear interpolation of the
rays is performed to generate the new rays which begin be-
tween other rays. Note that the Bartlett �lter of size �1 is
the inverse of the bilinear interpolation operation.

2.4 Adaptive Ray Casting

Notice in Figure 4 that the volume does not need to end on
a region boundary. However, since we want the rays to be
on exact voxel coordinates at all of the region boundaries,
we begin the rays on the grid coordinates at the rear of the
last enclosing region. Therefore, the voxel coordinates and
the ray sample locations may not be congruent at the rear of
the volume. This not only provides the mentioned boundary
conditions, but aids with temporal antialiasing when the eye-
point is moved in smaller than voxel unit distances because
the rays will continue to originate from the same positions
relative to the voxels.
Algorithm 1 performs the ER-Perspective back-to-front

projection of a volume. First, the exponential boundaries are
created for the regions given the eye position in voxel units.
We establish enough regions to completely encompass the
volume. To perform the rendering, we loop through each
region from the back to the front, computing normal ray
casting, but in a slice-order fashion, and store the partially
computed rays in a compositing bu�er. Between regions we
perform the ray density resampling of the compositing bu�er
described in Section 2.3. The baseplane image is warped
onto the �nal image plane for display.
Figure 4 shows a 2D example of how the rays travel

through a 73 volume when the viewpoint is 3 voxel units
in front of the volume. Notice that the sampling rate is al-
ways between 7 and 14 per slice, and that it increases as
the rays travel through the regions from back to front. The
number of ray density resampling stages for an N3 volume
is limited by log2N , since that is the maximum number of
regions in an N3 volume. The last resampling step shown

3

To appear in the 1998 Symposium on Volume Visualization

Baseplane Region
boundaries

Volume

e = 3

Voxel
Coordinates

Ray
Sample
Locations

z

Resampling
Filter
Weights

Figure 4: A 73 volume, where the viewpoint is 3 voxel units in
front of the volume. The rear of the volume does not coincide
with a region boundary, but the rays are still positioned on
the voxel coordinates at the rear of the region boundary. In
this example the view frustum is set up so that the �nal image
coincides with the baseplane

on the baseplane is performed when the image warp takes
place.

3 Evaluation of the Algorithm

3.1 Qualifying the Filter

With previous adaptive ray density perspective methods,
it was di�cult to determine the �ltering function achieved
when rays were merged using irregular patterns. Since we
use regular boundaries for the �ltering operations and ex-
act ray placement within the boundaries, it is possible to
compute the e�ective �lter achieved by the cascading of lo-
cal Bartlett �lters. This is one of the major advantages of
our ER-Perspective algorithm. Additionally, we show that
the boundaries and �lter we have chosen overcome the poor
image quality usually associated with successive �ltering of
discrete data.
Consider the case of a perspective projection of a volume

7 slices deep with the eyepoint 2 voxel units in front of the
volume, as depicted in Figure 5. Using our ER-Perspective
approach, the rays that are cast through the region are one
voxel unit apart at the rear of the region. However, the rays
reach a region boundary and are �ltered using local Bartlett
�lters. The Bartlett �lter (simpli�ed to 1-dimension) con-
tains the following weights for a kernel of size 2n + 1 nor-
malized so that the output has the same scalar range as the
input:

0;
1

n2
;
2

n2
; � � � ;

n� 1

n2
;
n

n2
;
n� 1

n2
; � � � ;

2

n2
;
1

n2
; 0 (1)

The ER-Perspective algorithm always resamples the rays to

Compute Z-position of Eye in Voxel Units

Compute Exponential Region Boundaries

for region = MaxRegion to 0
for slice = MaxSlice[region] to MinSlice[region]
Bilinear Interpolate Samples for this slice

Shade and Classify Samples

Composite Samples onto Rays in Buffer

end for
if not frontmost region
Downsample Rays in Compositing Buffer with

Bartlett Filter

end if
end for
Warp Baseplane to Final Image plane

Algorithm 1: Back-to-Front ER-Perspective Ray Casting
(assuming Z-major axis projection)

half of the original density. Using a �lter of size �2 rays
(n=2) creates a �lter kernel of 5x5, or just the following 5
weights for one dimension:

0;
1

4
;
2

4
;
1

4
; 0 (2)

Now, consider the contribution of samples a; b; c; d and e to
the partially composited ray which changes from region 2 to
region 1 at location o,

o =
1

4
b+

2

4
c+

1

4
d (3)

likewise the partial rays at p and q are computed

p =
1

4
d+

2

4
e+

1

4
f (4)

q =
1

4
f +

2

4
g +

1

4
h (5)

(We omit the formulas for partial rays for n and r since
they have a 0 weight in the �nal �lter for pixel A.) Con-
tinuing the ER-Perspective algorithm, the resampled partial
rays n; o; p; q and r are cast through region 1 where they are
again �ltered by a local Bartlett �lter. Now, the normalized
contribution of n; o;p; q and r to pixel A is:

A =
1

4
o+

2

4
p+

1

4
q (6)

Substituting in the values for o;p and q gives us:

A =
1

16
b+

2

16
c+

3

16
d+

4

16
e+

3

16
f +

2

16
g +

1

16
h

(7)

Notice that this formula contains the same weights as a
Bartlett �lter with kernel size of nine values (n=4). This
can be repeated for pixel B with the same �lter weights.
For front-to-back processing a similar analysis can be used
to demonstrate the performance of the algorithm and the re-
sult of successive applications of the bilinear interpolation.
We can also show that each sample of a slice contributes

the same amount to the �nal image as any other sample in
the same region (assuming all other operations on samples,
such as color mapping and compositing, are equal). For
example, the value sample e contributes to pixel A with an
e�ective weight of 1

4
after the cascading of the local Bartlett

4

To appear in the 1998 Symposium on Volume Visualization

a b c d e f g h i

o p q

A

Bartlett Filter Weights for Ray Resampling

mlkj

B

n r s t

Region 1

Region 2

Figure 5: ER-Perspective ray casting across two regions.

�lters. Likewise, sample i contributes to pixel B with an
e�ective weight of 1

4
. Sample f contributes to pixel A with

a weight of 3

16
and to pixel B with a weight of 1

16
for a

total of 1

4
. This can be repeated for samples g and h. The

samples to the left of e and the right of i contribute partly to
pixels left of A and right of B, respectively, so that the sum
of their contributions to the �nal image is also 1

4
. In fact,

every sample that is in this region has the same weight. The
weight is 1

4
because this region is the second region in the

volume. For the �rst region in the volume, every sample has
a weight of 1

2
. This is quali�able by realizing that there are

2 rays per �nal image pixel in this region. There are 4 rays
per �nal image pixel in the second region, etc. Consequently,
the weight which determines the contribution of each sample

towards the �nal image is the ratio
image pixels

samples in this slice
.

3.2 Image Quality

Two-dimensional texture mapping has long utilized challeng-
ing images for measuring aliasing and comparing methods.
The images that are often used contain high frequency com-
ponents such as checkerboard patterns of black and white
squares. We propose to use a similar idea to create test
volumes for measuring the e�ectiveness of algorithms to ac-
curately render antialiased volumes. Figure 6 (Figure 12
in the Color Section) shows images of our volume dataset
for measuring antialiasing performance of perspective algo-
rithms. The dataset consists of planes of small cubes in a
checkerboard pattern. The volume consists of a oor of blue
cubes and left and rear walls of white cubes. The cubes are
53 voxels and the volume is 2563.
The images in row (a) of Figure 6 were rendered by an

undersampling algorithm where the ray density is set to be
equal to the underlying volume at the front of the volume.
In these images, ray divergence causes two types of aliasing.
The �rst is Moire patterns due to the non-uniform sampling,
which occurs on the walls which are perpendicular to the
view plane. The second is the total elimination of small
features towards the rear of volumes due to perspective ray
divergence. This aliasing occurs on the rear wall which is
parallel to the view plane. Row (b) of this �gure was created
using our ER-Perspective algorithm. Note that there are
no noticeable aliasing e�ects. Figure 6 row (c) was created
using oversampling, where the ray density is equal to the
underlying volume at the rear of the volume. Because of
ray divergence, the volume is oversampled at the front. The
images were rendered so that the image plane coincided with
the front of the volume. The left column is rendered with the

Figure 6: 2563 test volumes with 53 subcubes. Row (a) Un-
dersampling, (b) ER-Perspective, (c) Oversampling. The
left column is rendered with the eye at (128,128,-64) and
a 127 deg �eld-of-view, while the right column is with an eye
at (128,128,-128) and 90 deg �eld-of-view.

eye at (128,128,-64) and a 127 deg �eld-of-view. The right
column from (128,128,-128) and 90 deg.

Figure 7 (Figure 12 in the Color Section) shows the un-
dersampling, ER-Perspective and oversampling methods for
the test volume with a di�erent subcube granularity and
an LGN neuron dataset. Our new exponential perspective
method does not su�er from any of the aliasing artifacts for
these datasets either. Notice that the quality of our projec-
tions visually matches the quality of the much slower over-
sampling method. In the LGN pictures, notice the ganglions
which extend towards the rear of the neuron. With the un-
dersampling method, there is noticeable disappearance of
these small features which could greatly a�ect the interpre-
tation of the dataset.

Note that there is no noticeable visual di�erence between
the images created with our ER-Perspective algorithm and
the oversampling method. Figure 8 is the di�erence image
between the ER-Perspective method and the oversampling
method for the test volume in Figure 7. The di�erence image
is scaled up to make the values displayable. The actual range
of the di�erences found is 5 out of 256 grayscales (the R, G
and B di�erence images with 256 values each was converted
to grayscale).

5

To appear in the 1998 Symposium on Volume Visualization

Figure 7: The left column is a 2563 test volumes with 33 sub-
cubes with the eye at (128,128,-128) and 90deg �eld-of-view.
The right column is the LGN dataset. Row (a) Undersam-
pling, (b) ER-Perspective, (c) Oversampling.

The region of the oversampling image which represents
the front half of the volume in Figure 7 di�ers slightly
from the ER-perspective image in the same �gure because
of the higher sampling rate performed by the oversampling
method. This cannot be avoided when sampling at di�er-
ent rates. However, the regions of the same images which
represent the rear half of the volume are identical. This
gives empirical proof that the cascading of Bartlett �lters is
equivalent to one wide Bartlett �lter as shown in Section 3.1.

3.3 Performance

Since we are performing a slice-order algorithm, it is simple
to analyze the total amount of computation by calculating
the amount of work performed on each slice. Assuming that
the work done on each sample is the same, the count of the
number of samples processed can be used as a comparison
of the workloads. For example, in the oversampling method,
the number of samples on the rear slice of a volume which
ends exactly on a region boundary is N2. On the front slice,
the sample count depends on the geometry of the eyepoint.
In particular, using similar triangles and ez as the distance
of the eyepoint from the front of the volume, the number of

Figure 8: Di�erence between Oversampling and ER-
Perspective from Figure 7 scaled up for display-ability. The
actual range of the di�erences is 5/256 (the RGB image was
converted to grayscale).

samples taken is

�
N2 +N � ez

ez

�2

(8)

This can be generalized for any slice s through the volume
to

�
N2 +N � ez

ez + s

�2

(9)

Thus, the total count of samples processed by the oversam-
pling method is

NX
s=0

�
N2 +N � ez

ez + s

�2

(10)

Similarly, the undersampling method can be shown to per-
form the following amount of work

NX
s=0

�
N � ez

ez + s

�2

(11)

For our ER-Perspective algorithm the analysis is more com-
plicated. Depending on the viewing geometry, we create

log
�
N+ez
ez

�
� 1 regions. We have shown in Section 2.2 that

each of these regions has ez �2
i slices. Again using similar tri-

angles, our ER-Perspective algorithm processes the following
number of samples

log (N+ezez
)�1X

reg=0

ez�2
regX

s=0

�
N � (ez � 2

reg
� ez + s)

ez � 2reg � ez

�2

(12)

This complicated formula has an upper bound of

NX
s=0

(2N)2 (13)

and a lower bound of

NX
s=0

(N)2 (14)

6

To appear in the 1998 Symposium on Volume Visualization

0 50 100 150
Viewpoint Z−coordinate (Voxel Units)

0.0

0.1

1.0

10.0

100.0

1000.0
R

un
 T

im
e

(s
ec

on
ds

)

Oversampling
ER−Perspective
Parallel
Undersampling

Figure 9: Runtimes for each of the algorithms for a 1253

LGN neuron volume as the distance from the viewpoint to
the front of the volume changes. The algorithms ran with
a high-quality full Phong equation look-up-table shading of
every sample point.

Examining Equation 10 we can see that the oversam-
pling method could perform O(N4) work on the front slice
when the eyepoint is very close to the volume. Figure 9
presents measured runtimes for the various rendering algo-
rithms at several viewpoints (all implemented with a high-
quality Phong shading look-up-table). The oversampling
times grow rapidly as the eyepoint is moved closer to the
front of the volume.
If we examine Equation 11, we see that as the eyepoint ap-

proaches the front of the volume, the numerator approaches
zero. The amount of work performed on the rear slice also
approaches zero. We can, once again, see in Figure 9 that
the runtimes of the undersampling method decrease as the
eyepoint becomes closer to the volume.
Equations 13 and 14 show that regardless of the view-

point geometry, the amount of work performed by our ER-
Perspective algorithm is bounded by
(N2) and O(4N2) per
slice. This provides the following two advantages:

� an upper bound on the runtime of the algorithm that
is linear with the number of voxels and is independent
of the view position

� a lower bound on the image quality achieved that is
also independent of the view position

Thus, the user can set the base sampling rate (see Section 2)
for the desired image quality and be sure that the sampling
rate is su�cient throughout the volume for that quality.
In contrast, the oversampling method provides a lower

bound on the image quality yet the runtime of the algorithm
may become much greater than that of the ER-Perspective.
The undersampling method provides an upper bound on the
runtime of rendering, but the image quality may become
much worse than the ER-Perspective.
The algorithm is also parallelizable. We created a sim-

ple parallel version of our code to run on 8 PEs of an SGI
Challenge using threads and SMP features. Each PE classi-
�ed, shaded and composited 1

8
of each slice. With no load

balancing, the algorithm rendered images of the 1253 LGN

neuron in 1.75 seconds. A proper parallel version with good
load balancing would perform even better.

4 Comparison To Other Algorithms

In this section we compare and contrast our approach to
other algorithms. Levoy and Whitaker's 3D-mipmap ap-
proach [8] handled perspective ray divergence by large sam-
pling kernels. To improve the runtime of their algorithm,
they precomputed a 3D mipmap of the volume. Thus they
have sample kernels of various sizes available during render-
ing. Our algorithm, on the other hand, e�ectively classi�es
each sample and then computes the larger kernel on the y
by merging the rays as they project towards the front of
the volume. Levoy and Whitaker's algorithm requires a pre-
classi�cation and shading step even before the 3D mipmap
generation.
Brady et al.'s two phase approach [2] could be considered

a more general case of our algorithm. While we de�ne very
speci�c region boundaries, Brady et al. allow the user to set
them. If Brady et al.'s algorithm were utilized with expo-
nentially increasing region sizes, the main di�erence between
our algorithm and theirs is that we utilize a slice-order ap-
proach. Therefore, our region boundaries coincide with vol-
ume slices while Brady et al.'s boundaries are arcs of equal
distance from the eyepoint. We note that Brady et al. utilize
shading approximations on their algorithm. For Comparison
purposes, we adapted our algorithm to implement the same
shading quality as they did. Brady et al. reported 1.35
seconds for a complete raycast from scratch of a 80x80x127
volume on one 300MHz Pentium II. For the same sized vol-
ume our algorithm, implemented with the same shading al-
gorithm as Brady et al.'s, rendered in 0.91 seconds on one
195MHz R10000. Even though Brady et al. utilized a faster
machine, our algorithm was faster because the slice-order
volume access allows for cache-coherency. Additionally, al-
though Brady et al. takes advantage of a 3D graphics co-
processor to perform the inter-region �ltering, we have fewer
regions to �lter since we utilize exponentially growing re-
gions. In essence, our algorithm �lters the rays only when
the ray density dictates it (and we have found this to be at
exponentially increasing distances), while Brady et al. cre-
ates regions that are each 16 samples in length. We have also
found that cache performance is very important to volume
rendering runtimes. Our machine has a 2MB L2 cache.
The algorithm by Novins et al. [9] utilizes a box �lter to

merge the split child rays. Wolberg [14] has shown that the
box �lter contains more prominent side lobes in the stop-
band of the frequency domain than the Bartlett �lter and
therefore contributes to more aliasing. Since Novins et al.
designed their algorithm in 1990, we re-implemented it on
our hardware to compare the runtimes. The results show
that our algorithm is twice as fast, attributed to the fact
that we utilize slice-order volume samples. Additionally, we
observed that the box �lter, while removing most of the
aliasing artifacts of the undersampling method, left more
aliasing than the ER perspective algorithm (see Figure 10
and Figure 11 in the Color Section). This is more notice-
able in animations. We notice similarities to our algorithm
despite the slice-order sampling and the �lter used for split-
ting/merging. Speci�cally, Novins et al. split whenever the
ray density becomes less than 1 ray per unit voxel. Our
analysis shows that this occurs at exponentially increasing
Euclidean distances from the eyepoint, although with an arc
pattern similar to Brady et al.'s rather than slice-order like
ours.

7

To appear in the 1998 Symposium on Volume Visualization

Figure 10: Rendering the test volume with (a) ER-
Perspective with Bartlett �lter and (b) Novins et al. algo-
rithm with a box �lter. There is slight, but noticeable, re-
duced aliasing for the Bartlett �lter.

5 Concluding Remarks

We have presented a new algorithm which does not su�er
from the traditional pitfalls when performing perspective
projections on uniform regular grids. It runs faster than
oversampling methods and produces better quality images
than undersampling methods. We have shown that our al-
gorithm is a special case of Brady et al.'s more general ap-
proach and that slice-order voxel access allows our algorithm
to run faster. We have shown that our Bartlett �lter for ray
merging provides an image quality improvement over the
box �lter utilized by Novins et al. We have quali�ed our al-

gorithm by characterizing the e�ective �ltering on the input
data. We also have utilized challenging datasets and shown
the algorithms antialiasing e�ectiveness. Our algorithm is
attractive because it is very well suited for implementation
on hardware architectures to produce real-time perspective
volume rendering, such as on the Cube family of architec-
tures. We plan to create the exact mapping of the algorithm
on the Cube hardware pipelines and study the VLSI require-
ments for memory and communication.

6 Acknowledgements

This work was supported by the National Science Founda-
tion under grant MIP9527694, O�ce of Naval Research un-
der grant N000149710402, Mitsubishi Electric Research Lab,
Japan Radio Co., Hewlett-Packard, and Intel Corp. The
LGN dataset is courtesy of Howard Hughes Medical Insti-
tute, Stony Brook, NY.

References

[1] I. Bitter and A. Kaufman. A Ray-Slice-Sweep Volume Rendering

Engine. In SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 121{130, Los Angeles, CA, Aug. 1997. ACM.

[2] M. Brady, K. Jung, H. Nguyen, and T. Nguyen. Two-Phase

Perspective Ray Casting for Interactive Volume Navigation. In

Visualization '97, pages 183{189, Pheonix, AZ, Oct. 1997. IEEE.

[3] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Ren-

dering. In Computer Graphics, SIGGRAPH 88, pages 65{74,

Atlanta, GA , Aug. 1988. ACM.

[4] A. Kaufman and R. Bakalash. A 3-D Cellular Frame Bu�er.

In Eurographics '85, pages 215{220, Nice, France, Sept. 1985.

Eurographics.

[5] K. Kreeger, F. Dachille, and A. Kaufman. A slice-order

ray-merging method for volume rendering. Technical Report

CVC.97.04.08, Center for Visual Computing, SUNY Stony

Brook, NY 11794-4400, Apr. 1997.

[6] P. Lacroute and M. Levoy. Fast Volume Rendering using a Shear-

warp Factorization ot the Viewing Transform. In Computer

Graphics, SIGGRAPH 94, pages 451{457, Orlando, FL, July

1994. ACM.

[7] M. Levoy. Display of Surfaces from Volume Data. IEEE Com-

puter Graphics and Applications, 8(5):29{37, May 1988.

[8] M. Levoy and R. Whitaker. Gaze-directed volume rendering.

Computer Graphics, 24(2):217{223, Mar. 1990.

[9] K. L. Novins, F. X. Sillion, and D. P. Greenberg. An e�cient

method for volume rendering using perspective projection. Com-

puter Graphics, 24(5):95{100, Nov. 1990.

[10] R. Osborne, H. P�ster, H. Lauer, N. McKenzie, S. Gibson, W. Hi-

att, and T. Ohkami. EM-Cube: An Architecture for Low-Cost

Real-Time Volume Rendering. In SIGGRAPH/Eurographics

Workshop on Graphics Hardware, pages 131{138, Los Angeles,

CA, Aug. 1997. ACM.

[11] H. P�ster and A. Kaufman. Cube-4 - A Scalable Architecture

for Real-Time Volume Visualization. In Symposium on Volume

Visualization, pages 47{54, San Francisco, CA, Oct. 1996. ACM.

[12] J. E. Swan, K. Mueller, T. Moller, N. Shareef, R. Craw�s, and

R. Yagel. An Anti-Aliasing Technique for Splatting. In Visual-

ization '97, pages 197{204, Pheonix, AZ, Oct. 1997. IEEE.

[13] L. Westover. Footprint Evaluation for Volume Rendering. In

Computer Graphics, SIGGRAPH 90, pages 367{376, Dallas,

TX, July 1990. ACM.

[14] G. Wolberg. Digital Image Warping. IEEE Computer Society

Press, Los Alamitos, CA, 1990.

8

