
Volume Graphics (2003)
I. Fujishiro, K. Mueller, A. Kaufman (Editors)

Hybrid Forward Resampling and Volume Rendering

Xiaoru Yuan, Minh X. Nguyen, Hui Xu, and Baoquan Chen

Department of Computer Science and Engineering
University of Minnesota at Twin Cities

http://www.cs.umn.edu/∼baoquan
Email:{xyuan, mnguyen, hxu, baoquan}@cs.umn.edu

Abstract
The transforming and rendering of discrete objects, such as traditional images (with or without depths) and vol-
umes, can be considered as resampling problem – objects are reconstructed, transformed, filtered, and finally
sampled on the screen grids. In resampling practices, discrete samples (pixels, voxels) can be considered either
as infinitesimal sample points (simply called points) or samples of a certain size (splats). Resampling can also be
done either forwards or backwards in either the source domain or the target domain. In this paper, we present a
framework that features hybrid forward resampling for discrete rendering. Specifically, we apply this framework
to enhance volumetric splatting. In this approach, minified voxels are taken simply as points filtered in screen
space; while magnified voxels are taken as spherical splats. In addition, we develop two techniques for perform-
ing accurate and efficient perspective splatting. The first one is to efficiently compute the 2D elliptical geometry of
perspectively projected splats; the second one is to achieve accurate perspective reconstruction filter. The results
of our experiments demonstrate both the effectiveness of antialiasing and the efficiency of rendering using this
approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation-
Display Algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Resampling, an operation usually related to image process-
ing, is the process of transforming a discretely sampled im-
age from one coordinate system to another. This definition
can be extended to the transformation of any other discrete
object, such as depth images and volumes. With perspec-
tive transformation, resampling amounts to 3D rendering;
the issue becomes how to properly resample the discrete
objects using the regular screen grids after projection. Con-
ceptually, an ideal discrete resampling operation consists of
four basic steps: reconstruction, transformation, prefiltering,
and sampling 5, 19. In practice, reconstruction and prefiltering
filters are usually combined together with embedded trans-
formation. Additional operations, such as visibility testing
and lighting estimation, are then conducted for 3D render-
ing. The fundamental issue of 3D rendering is in which
domain (source or target) to evaluate these operations and
how to accumulate each contribution so that the original dis-
crete object can be faithfully represented on the 2D screen

grids. In this paper, we offer a hybrid resampling frame-
work by converting discrete rendering into a resampling
problem, to ensure effective antialiasing with efficiency. Our
hybrid method features forward processing. When samples
are minified after transformation, they are taken simply as
points, and filtering is done in the target domain; while sam-
ples are magnified, they are taken as splats which are recon-
structed before projection to the screen. This framework can
be generally applied to the rendering and transformation of
discrete objects, such as texture mapping, 3D image warp-
ing, and volume rendering.

The volumetric splatting introduced by Westover 18 takes
an object order approach in contrast to volumetric ray cast-
ing. In splatting, a volume is represented as an array of re-
constructed voxel kernels; each of these kernels is first clas-
sified to have color and opacity based on the transfer func-
tion applied and is then projected to the image plane, yield-
ing a footprint or splat on the screen, and finally compos-
ited with the framebuffer. Splatting has a number of fea-

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

tures that make it attractive, mainly as follows: (1) its object
processing order makes it feasible to store and access vol-
umes in an efficient fashion, especially for sparse volumes;
(2) splats on screen and their reconstruction filters can be
precomputed and stored in lookup tables so that only table
lookup is needed during the run-time rendering. Recently,
image-based 14, 13 and point-based 12, 22 systems have gained
in popularity; without explicit connectivity available, splat-
ting becomes a suitable rendering method in these systems.
Forward splatting has also been used in texture mapping 1.

In recent years, a number of methods have been proposed
to improve the original splatting method, including methods
for delivering correct perspective rendering 11, 10, antialias-
ing 16, 21, and efficiency 6. Aliasing occurs when voxels are
minified (i.e., their splats project to less than one pixel size
on screen). The approach taken by Swan et al. 16 inflates the
splats so that they cover at least one pixel. While they per-
form this inflation uniformly Zwicker et al. 21 have proposed
techniques to non-uniformly inflate splats to accommodate
anisotropic filtering. The original splatting methods of West-
over 18 do not work well for perspective projection because
the projections of voxels on screen are view-dependent,
therefore straightforwardly looking up pre-computed, view-
independent reconstruction filter leads to artifacts. Mueller
and Yagel 11 have proposed a ray-driven approach for per-
spective volume rendering, in which a spherical voxel is re-
placed with a disk perpendicular to the ray passing through
the center of the voxel; the disk is mapped with the pre-
computed reconstruction filter. For every pixel on screen
covered by the disk, a ray is shot to the disk and the inter-
section is used as the index to the filter. Nevertheless, the
filter index that is computed is still inaccurate due to the re-
placement of spheres with disks. Mueller et al. 10 have also
proposed an image-aligned sheet buffer approach. In this
method, voxels are cut into thin slabs parallel to the view-
ing plane; each slab of a voxel is reconstructed separately by
looking up pre-computed, view-independent filter. Although
the reconstruction is inaccurate for each slab, however, when
the slab is thin enough the error becomes ignorable. Voxel
slabs within the same slab are summed together into a sheet
buffer, which is then composited to the framebuffer. This
method also eliminates the popping effect presented in the
original axis-aligned sheet buffer approach 18.

In this paper, we employ a hybridity of points and splats
as rendering primitives. While regular splatting is performed
for magnified voxels, for minified voxels, rather than in-
flating their splats, we simply replace them with points. To
compute their contributions to the final image, we place a
circular filter on each pixel in-screen to filter the incoming
points. Filtering points in the screen space is much simpler
than splatting them. Therefore, our method features a hybrid
approach using both forward point projection and forward
splat projection. Within this framework, we have designed
and implemented a number of techniques for accurate per-
spective splatting calculation. First, we develop methods for

more efficiently estimating the elliptical shape of 2D screen
splats. Second, we present techniques to achieve accurate
perspective reconstruction filter. The key is to generate a cor-
rect index to the lookup table of the view-independent recon-
struction filter. The results of our experiments demonstrate
both effective antialiasing and efficient rendering.

2. Hybrid Forward Resampling Framework

The key task in resampling is for each screen pixel to deter-
mine the contributing input discrete samples and to convolve
the samples with a proper filter to obtain the final pixel color.
This filter is usually defined with a circular footprint with a
Gaussian profile and can be applied to either screen pixels or
input samples. The processing can be done in the source do-
main (object order) through forward projection, or in the des-
tination domain (screen order) through backward projection.
This amounts to four practical approaches: forward point
projection (forward projection; filtering on screen); forward
footprint projection (forward projection; filtering on object);
backward point projection (backward projection; filtering on
object); and backward footprint projection (backward pro-
jection; filtering on screen). In the past, all methods have
been practiced. A detailed survey can be found in 2, 3. Here
we present a hybrid resampling framework that combines
forward point projection and forward footprint projection.

For the forward point projection method, each input sam-
ple is taken as a point and projected into screen space. A
circular filter is placed at each pixel for prefiltering the pro-
jected samples 4, 13. For minified samples, where aliasing
usually arises, point projection effortlessly performs qual-
ity antialiasing; however, holes may appear in magnified
samples after projection because reconstruction is not per-
formed. For the forward footprint projection method, each
input sample is considered a circle (or a sphere for voxels)
forwardly projected to the screen, creating a screen-space
conic. The conic is then scan-converted and the energy of
the sample is convolved with a filter on screen. This effec-
tively ‘splats’ the energy of the sample to the pixel within
its projected footprint and thus effectively solves the prob-
lem for the magnification situation. This method, however,
presents a potential problem for the minification situation,
however, because the entire conic may actually fall between
the pixels, therefore making no contribution to any of them.
Computing and evaluating a conic or even the approximated
ellipse shape as well as convolving texel energy are expen-
sive operations (especially in the minification situation).

Therefore, our hybrid forward resampling framework per-
forms forward point projection for minified samples and for-
ward footprint projection for magnified samples. The gen-
eral concept, based on volume rendering, is illustrated in
Figure 1. For magnified voxels (e.g., voxel c in Figure 1),
we perform regular splatting. However, for minified voxels
(e.g., voxel a and b), we take them as points and directly
project them to the image plane; their contributions are then

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

computed by circular filters placed at pixels. This framework
takes advantage of both points and splats: points are more
efficient for the minification region, while splats are advan-
tageous for the magnification region.

Volume Image

a
b

a
b

c

c

Figure 1: Voxels are taken as either splats or points depend-
ing on their projection size on screen (e.g., points: voxels a
and b, splat: voxel c).

3. Hybrid Forward Image Warping

We first introduce the application of hybrid forward resam-
pling to improve existing forward texture mapping methods.
Forward point projection has previously been employed for
texture mapping. Ghazanfarpour et al. 4 have proposed a
technique that takes every texel as a point and projects it
into screen space. A filter is placed at each pixel for fil-
tering the projected texels. This amounts to effective an-
tialiasing in the minification region, and can be almost ef-
fortlessly performed (see Figure 5a). Compared to forward
splatting where splats have to be estimated (by ellipses) and
scan-converted, here no splat is computed and approximated.
Holes, however, may appear for magnification regions (also
see Figure 5a), one solution for which is to supersample
in texture space along the magnification axis and forwardly
project subtexels (as points) into screen space. But because
this amounts to an expensive approach, splatting becomes
more suitable here. Because the reconstruction filter kernel
(usually a Guassian kernel) of a splat can be pre-generated
and stored in a table, computing its contribution to sev-
eral pixels can be done in one scan-conversion path. Figure
5b demonstrates that our hybrid forward method produces
higher quality antialiasing than does traditional backward
texture mapping with bilinear interpolation (Figure 5c).

Another application of the hybrid resampling framework
is in the warping of depth images. Traditional 3D im-
age warping is done using McMillan’s warping equation 8,
which allows one to take advantage of the regular structure
of images to perform incremental transformation. McMil-
lan’s method takes a forward point projection approach —
that is, after projection, a sample’s color is written to its
nearest pixel, overwriting whatever color the pixel has. Like-
wise, two problems exist with this approach: (1) holes in the

magnification region and (2) aliasing in the minification re-
gion. A few approaches have been proposed for solving this
problem, such as connecting the samples of the reference
image into a polygonal mesh 7 or using splats for each sam-
ple 14. Both methods are expensive for the minified region,
in which either a triangle or splat projects to the subpixel
area. WarpEngine 13 connects samples, but avoids the over-
head of general polygonal rendering by generating subsam-
ples before (or after) projection. Because subsamples have
to be dense enough to completely avoid incorrect holes, this
amounts to an expensive solution in the magnification re-
gion.

Here we apply our hybrid forward method to image warp-
ing. For magnified samples, we employ the splatting method.
The splat size of a source sample can be estimated based
on its adjacent samples (e.g., their maximum distance to the
current sample). For minified samples, we employ points; it
is important that we do not overwrite visible samples pro-
jecting to the same pixel. Rather, we need to accumulate
each sample’s contribution through screen space filtering for
antialiasing. Visibility is calculated using depth, normal, as
well as detected boundary discontinuity information 13; sam-
ples within the same boundary are assumed to be on the same
surface. Finally, for both magnified and minified cases, we
detect backfacing samples by checking their normals. Fig-
ure 6 compares the two warped images (Figures 6b and 6d)
and their zoom-ins (Figure 6c and 6e) generated from our
hybrid method and McMillian’s original warping algorithm,
respectively. This clearly shows that higher quality can be
produced using the hybrid method.

4. Hybrid Forward Volume Rendering

Similarly, we apply our hybrid resampling framework to for-
ward volume rendering (i.e., volumetric splatting). Although
the framework is general enough to be applied to enhance
various existing methods, we here discuss one specific im-
plementation.

4.1. Volume Processing Order

For volume rendering, care must be taken to ensure cor-
rect compositing because of the translucent nature of vox-
els. Splatting methods have been designed that feature differ-
ent volume processing orders: (1) always performing ’over’
(compositing) operation on voxels 17, which processes vox-
els in depth-sorted order and then composites voxel’s splat
one over another; (2) slice-by-slice processing order with
sheet buffer, which accumulates voxels’s colors within each
slice into a sheet buffer using summation and then compos-
ites the entire sheet to the intermediate framebuffer 18; and
(3) image-aligned sheet buffer order, in which sheets are al-
ways parallel to the image plane 10. Each method has its ad-
vantages and disadvantages. For example, the always com-
positing method amounts to an efficient approach, but can

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

lead to color bleeding artifacts as each voxel is processed in-
dependently, thus ignoring the fact that adjacent splats over-
lap. The axis-aligned sheet buffer approach solves the bleed-
ing problem, but results in popping artifacts — that is, when
the viewpoint shifts at points that require switching to a dif-
ferent axis-aligned sheet buffer, the summation and com-
positing order changes between voxels of the same slice,
hence resulting in changes in the shade of colors. The image-
aligned sheet buffer approach further solves the popping ef-
fect because The sheet’s orientation is incrementally updated
rather than switched at some discrete points. However, even
with optimizations 6, this approach has added several de-
grees of complexity to the original splatting approaches be-
cause every sheet defines a thin slab in 3D space that cut
a voxel sphere (splats) into several parts; different parts are
then summed to different sheets. Theoretically, our hybrid
framework can be applied to all these methods. For exam-
ple, for a image-aligned sheet buffer approach, when pro-
cessing distant sheets in minification region, voxels can be
represented using simple points, with no need to cut through
splats that are eventually projected to subpixel size. Filtering
is then done in sheet buffer on points.

Image plane

Z

Eye

x-y slice

z

P

Figure 2: Volume processing order.

In this paper we take the original composite-every-sample
approach 17, as for most cases bleeding effects are not ob-
servable and this approach can be implemented efficiently.
The key to this method is processing voxels in strict depth
order. This ordering can be implemented by first transform-
ing voxels to the image space and then sorting them based
on their depth values as done in 10. Another sorting method
that can be used is described by Swan 15; here, once the order
is determined, voxels are processed either as splats or points
based on their projection size. The dotted line in Figure 2
indicates the boundary between splats and points. While we
always perform ‘over’ operation (compositing) for splats, we
choose not to do so for points. The reason is that points do
not fully cover a pixel, and therefore two points may be in
fact side-by-side rather than occluding one another. There-
fore, we instead first sum points within a certain depth range

eye

Q

P

R1

R2

A

B

C

E

F

G

H

A’

B’

C’

E’

F’

G’

H’
O

Figure 3: Elliptical splat geometry.

(e.g., 1 unit) and then composite the result to the framebuffer.
This summation is done using the circular filter at the pixel.

4.2. Elliptical Splat Geometry and Perspective
Reconstruction Filter

There are two important issues in implementing perspective
splatting. The first is estimating the accurate geometry of
3D splats’ projection on screen; the second is computing the
correct reconstruction filter of perspectively projected splats.
We have developed techniques for addressing both issues.

In Figure 3, the eye rays tangent to the sphere form a
cone; the 2D projection of the sphere on the horizontal im-
age plane is then the intersection between the cone and the
image plane. By definition, this intersection is an ellipse. As
an ellipse is defined by its major and minor axes (R1 and
R2, simply call them major axes thereafter), once we have
computed these two axes, we can draw the ellipse. Here we
present an efficient way of computing major axes. We have
discovered that one of the two axes is the intersection be-
tween the plane formed by vector ~P, the eye ray vector per-
pendicular to the viewing plane, and vector ~Q, the eye vector
passing through the voxel center. The proof and details about
computing major axes appear in Appendix A.

In splatting, both volume reconstruction and integration
are performed at each voxel by projecting and compositing
weighted reconstruction kernels. A reconstruction kernel is
centered at each voxel, and its contribution is accumulated
onto an ellipse on the image plane. This projection (or line
integration) contains the integration of the kernel along a ray
from infinity to the viewing plane. The splat is typically in-
tegrated by parallel rays and is pre-computed and resampled
into what is called a footprint table (see right diagram of
Figure 4). This table is then re-sampled into the framebuffer
for each splat. For orthogonal projection and radially sym-
metric interpolation kernels, a single footprint can be pre-
computed and used for all views. The table is indexed by
distance to the circle center (e.g., i in the right diagram of

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

α
β

r

E

O

A BC

D
F

i

d

d

i

M

N

Β’

Figure 4: Perspective splatting reconstruction filter.

Figure 4). This is not the case with perspective projections or
non-uniform volumes, however, which require that the splat
size be changed and that the shape of the distorted recon-
struction kernel be non-spherical. Mueller’s image-aligned
sheet buffer approach 10 helps improve the integration accu-
racy by slicing the 3D reconstruction kernel into thin slabs.
It is perspectively accurate between slabs, however, within
each slab all kernels are orthographically projected. While
this significantly improves image quality, it requires much
more compositing and several footprint sections per voxel to
be scan-converted.

Here our goal is to perform accurate reconstruction for
each voxel only once and to make it accurate for perspective
projection. We still aim to use table lookup for efficient com-
putation. The key is to generate correct index to the lookup
table. Illustrated in Figure 4 (left diagram) in 2D, the sphere
has radius r. After we have obtained the screen ellipse (line
MN) for each voxel using the aforementioned method, we
then use an affine transformation to transform it back to the
circle indicated by the line BB′; for each pixel within the el-
lipse, we obtain index i in the circle (i = AC

AB ). This can be
done by affine transformation of the ellipse to the circle 21.
As we can see from Figure 4, the accurate index should be
d, which is the distance between the sphere center to the ray.
Here we derive equation for computing d from i:

AB = r cos(α).

AE = OE−AO = r
sin(α)

− r sin(α) =
r cos2(α)

sin(α)
.

OD = OE sin(β),
where tan(β) = iAB

AE .
By replacing AB and AE,
OD = OE sin(arctan(i tan(α)).
Therefore, The correct index is then
d = OD

OF = OE
OF sin(arctan(i tan(α)) =

sin(arctan(i tan(α))
tan(α)

.

From the above derivation, the correct index d is deter-

mined by the half cone angle α of the sphere. We can con-
struct a 2D table to speed up the computation of the above
equation. The two indices to the table are i and α. The num-
ber of entries for i is determined by the size of the pre-
computed reconstruction kernel table. To maintain a modest
number of entries for α, we create α entries only for certain
ranges of angles that appear in common situations (less than
15◦ are usually sufficient). For angles outside this range, we
simply evaluate the equation for computing d. Assuming that
these angles represent rare cases, the effort is spent only on
a small percentage of voxels.

5. Implementation and Results

We have implemented our hybrid volume rendering on a
Linux 1.7GHz Pentium 4 PC with 2GB memory. Figure
7 and 8 present images generated from different volume
data. We have used five data for testing; while the 3D
Checker Box volume is an artificial data set created by our-
selves, the other four data are public domain data, including
Aneurism (256× 256× 256, rotational b-plane x-ray scan
of the arteries of the right half of a human head), Lobster
(301× 324× 56, CT scan of a lobster contained in a block
of resin), Engine (256×256×128, CT scan of two cylinders
of an engine block), and Skull (256× 256× 256, rotational
b-plane x-ray scan of phantom of a human skull). All images
generated have a resolution of 400×400.

Figure 7 demonstrates that our method is free of the
popping effect. Figures 7a and 7b present two images
with view directions that cross the 45◦ viewing angle.
The shading is consistent between the two images. The
checkerboard images also demonstrate the effective an-
tialiasing of our method, which is further demonstrated
in the animation sequence (CheckerBox.mpg). (All ani-
mation files mentioned in this section can be accessed at
http://www.cs.umn.edu/∼baoquan/vg03/.) Figure 8a depicts
a rendering of Aneurism with splats marked out with red
color while points with regular color. The accompanying
movie shows this dynamically in motion (AneurismZoom-
Color.mpg). Figures 8b-8f provide more examples of vol-
ume rendering. Figures 8b and 8c present two images of
Aneurism with different viewing distances. These two im-
ages are extracted from an animation sequence (Aneurism-
Zoom.mpg). Note that the scattered points in the images are
noise from the original data; they are not aliasing artifacts.
This can be best evaluated from animation (Aneurism.mpg);
these points’ presence in the animation are consistent. Fig-
ures 8d and 8e are images of Engine and Skull. Figure 8f
depicts a lobster with shell and meat classified to red and
white, respectively.

Our next experiment evaluates the efficiency of our al-
gorithm. Although our implementation has not been opti-
mized, our preliminary results show encouraging speed. Fig-
ure 9 tabulates timings of rendering different volume data.
The number of non-transparent voxels’ is determined by the

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

specified transfer function for each volume data and indi-
cates the number of voxels being processed for each frame.
In the three columns regarding timing, the percentages in
brackets indicate the percentage of non-transparent voxels
that are processed as splats. The timings for “all splats” rep-
resent the average time for frames that all voxels are pro-
cessed as splats (close view); correspondingly, “all points”
timings measure for distant view that all voxels are taken as
points. The timings labeled as “mixed” are for those frames
that have a mixture of both splats and points. For points, we
have implemented occlusion culling since it is straightfor-
ward to do, but it has yet been done for splats. Comparing
the “all splats” and “all points” columns clearly shows that
splats are several times more expensive than points. The pro-
cessing time for splats depends on the size of their coverage,
as a larger splat takes more time for scan conversion and
compositing; therefore, the time is not simply proportional
to the number of splats. The mixed column represents the
common situation in which voxels are either magnified or
minified.

6. Conclusions and Future Work

We have presented a hybrid forward resampling framework
and its application to various discrete rendering problems,
such as texture mapping, 3D image warping, as well as vol-
ume rendering, with both effective and efficient antialias-
ing. Specifically, for volume splatting we have further devel-
oped techniques for performing perspectively correct splat-
ting with high quality and efficiency. As part of an on-going
project, we are working on further improving the overall
performance by implementing occlusion culling for splat-
ting 10, 20. The approach is to employ an occlusion map to
accumulate opacities at run-time as the renderer processes
in front-to-back order; a splat can be culled by checking
whether the pixels that it projects have reached full opacity.
A hierarchical occlusion map can help to quickly check if a
certain pixel region has reached full opacity without check-
ing every pixel in it. Other enhancement techniques can be
applied to our method, such as Post-classification and shad-
ing for eliminating a sometimes blurry effect 9.

Other future work will extend and apply this technique to
other problems where spatial sampling is the main operation.
One specific area of application that we will look at is point-
based rendering in our digital scanning project.

Acknowledgements

The Lobster data is obtained through VolVis distribution of
SUNY Stony Brook. The Aneurism data is from Philips Re-
search, Hamburg, Germany. The Engine data is from Gen-
eral Electric. The Skull data is from Siemens Medical Sys-
tems, Forchheim, Germany. Thanks to Michael Meissner for
maintaining the volume data repository and providing down-
loads.

This work was supported in part by the Army High Per-
formance Computing Research Center under the auspices of
the Department of the Army, Army Research Laboratory co-
operative agreement number DAAD19-01-2-0014. Its con-
tent does not necessarily reflect the position or the policy of
this agency, and no official endorsement should be inferred.
Other support has included a Computer Science Department
Start-Up Grant and a Grant-in-Aid of Research, Artistry, and
Scholarship from the Office of the Vice President for Re-
search and the Dean of the Graduate School, all from the
University of Minnesota.

References

1. B. Chen, F. Dachille, and A. Kaufman. Forward per-
spective image warping. Proc. of IEEE Visualization
’99, pages 89–96, Oct. 1999.

2. B. Chen, F. Dachille, and A. Kaufman. High-quality
efficient texture mapping. IEEE Transaction on Visual-
ization and Computer Graphics (to appear), 2003.

3. B. Chen, A. Kaufman, K. Mueller, and A. Varshney.
State of the art in data representation for visualization.
IEEE Visualization Tutorial, Oct. 2002.

4. D. Ghazanfarpour and B. Peroche. A high-quality fil-
tering using forward texture mapping. Computers and
Graphics, 15(4):569–577, 1991.

5. P. S. Heckbert. Fundamentals of texture mapping and
image warping. MS thesis, Department of Electrical
Engineering and Computer Science, University of Cal-
ifornia, Berkeley, June 1989.

6. J. Huang, K. Mueller, N. Sharef, and R. Crawfi. Fast-
splats: Optimized splatting on rectilinear grids. In
T. Ertl, B. Hamann, and A. Varshney, editors, Pro-
ceedings Visualization 2000, pages 219–226. IEEE
Computer Society Technical Committee on Computer
Graphics, 2000.

7. W. R. Mark, L. McMillan, and G. Bishop. Post-
rendering 3D warping. In M. Cohen and D. Zeltzer,
editors, 1997 Symposium on Interactive 3D Graphics,
pages 7–16. ACM SIGGRAPH, Apr. 1997. ISBN 0-
89791-884-3.

8. L. McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, Depart-
ment of Computer Science, University of North Car-
olina at Chapel Hill, 1997.

9. K. Mueller, T. Möller, and R. Crawfis. Splatting with-
out the blur. In D. Ebert, M. Gross, and B. Hamann,
editors, Proceedings of the 1999 IEEE Conference on
Visualization (VIS-99), pages 363–370, N.Y., Oct. 25–
29 1999. ACM Press.

10. K. Mueller, N. Shareef, J. Huang, and R. Crawfis.

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

High-quality splatting on rectilinear grids with efficient
culling of occluded voxels. IEEE Transactions on Vi-
sualization and Computer Graphics, 5(2), Apr. 1999.

11. K. Mueller and R. Yagel. Fast perspective volume ren-
dering with splatting by utilizing a ray-driven approach.
In R. Yagel and G. M. Nielson, editors, Proceedings
of the Conference on Visualization, pages 65–72, Los
Alamitos, Oct. 27–Nov. 1 1996. IEEE.

12. H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-
fels: Surface elements as rendering primitives. In SIG-
GRAPH ’00 Proc., pages 335–342, 2000.

13. V. Popescu, J. Eyles, A. Lastra, J. Steinhurst, N. Eng-
land, and L. Nyland. The WarpEngine: An architecture
for the post-polygonal age. In SIGGRAPH ’00 Proc.,
pages 433–442, 2000.

14. J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Lay-
ered depth images. In SIGGRAPH ’98 Proc., pages
231–242, July 1998.

15. E. Swan. Object-Order Rendering of Discrete Objects.
PhD thesis, Department of Computer and Information
Science, the Ohio State University, 1998.

16. J. E. Swan II, K. Mueller, T. Möller, N. Shareef, R. A.
Crawfis, and R. Yagel. An anti-aliasing technique for
splatting. In IEEE Visualization ’97, pages 197–204,
Nov. 1997.

17. L. Westover. Interactive volume rendering. Proceed-
ings of the Chapel Hill Workshop on Volume Visualiza-
tion, pages 9–16, May 1989.

18. L. A. Westover. Splatting: A Parallel, Feed-Forward
Volume Rendering Algorithm. PhD thesis, The Univer-
sity of North Carolina at Chapel Hill, Department of
Computer Science, July 1991. Technical Report, TR91-
029.

19. G. Wolberg. Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

20. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Vis-
ibility culling using hierarchical occlusion maps. SIG-
GRAPH ’97 Proc., pages 77 – 88, Aug. 1997.

21. M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa
volume splatting. Proc. of IEEE Visualization ’01,
2001.

22. M. Zwicker, H. Pfister, J. van Baar, and M. us Gross.
Surface splatting. SIGGRAPH ’01 Proc., pages 371–
378, 2001.

Appendix A: Elliptical Splat Geometry Formation

We use these simple facts for the proof: for an ellipse, the
major and minor axes are perpendicular to each other and
are symmetric axes, in fact the only symmetric axes (except
in a circle, which is a special case of the ellipse). Then to find
the major or minor axis, we only need to find one symmetric
axis; the other one will be orthogonal to it. See Figure 3, the
light shaded circle (center C) in the sphere is the intersection
between the ray cone and the sphere and is perpendicular to
~Q. Vectors ~P and ~Q form a plane that is perpendicular to the
viewing plane. AB is the intersection of the light shaded cir-
cle and the plane ~P~Q and is also the diameter of the circle.
Line EF is another diameter of the circle that is perpendicu-
lar to AB. Therefore, line EF is perpendicular to plane ~P~Q;
this means it is parallel to the viewing plane. Consequently,
all lines parallel to line EF (e.g., GH) are parallel to the
viewing plane. Using similar triangle geometry, these lines’
projections on the viewing plane are linearly scaled. Before
projection, these lines are symmetric along line AB. Because
of the linear scaling of the projection, these lines’ projections
on the viewing plane remain symmetric along A′B′, the pro-
jection of line AB. Therefore, line A′B′ is a symmetric axis
of the ellipse. Hence it is one of the major axes (R1). No-
tice that even though R2 direction is parallelly projected, R1
direction is not. Therefore, A′C′ 6= C′B′, the center of the
ellipse is not C′, but rather the midpoint of A′B′. Through
these conclusions, computing an ellipse becomes efficient.
Here a slightly approximative approach could be used when
the angle between ~Q and ~P is small. We can approximate R1
with vector ~C′B′ and the center of the ellipse as C′, therefore,
R2 is approximated by vector ~C′F ′. Under other situations,
the midpoint of A′B′ should be used.

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

(a) (b) (c)

Figure 5: Texture mapping using (a) forward point projection, (b) hybrid forward projection, and (c) traditional backward projection
with bilinear interpolation.

(a) (b) (c) (d) (e)

Figure 6: 3D image warping: (a) reference image, (b) warped image with antialiasing (our hybrid method), (c) zoom-in of marked
region in (b), (d) warped image without antialiasing (McMillian’s method), (e) zoom-in of marked region in (d).

(a) (b)
Figure 7: 3D Checker Box viewed at different viewing directions crossing the 45◦ angle.

c© The Eurographics Association 2003.



Yuan et al / Hybrid Forward Resampling and Volume Rendering

(a) (b) (c)

(d) (e) (f)

Figure 8: Images generated by hybrid method: (a) pseudo-colored Aneurism (red for splats), (b) distant view of Aneurism, (c) close
view of Aneurism, (d) Engine, (e) Skull, and (f) Lobster.

Model Resolution Number of Timing (second)
non-transparent voxels all spats mix all points

Engine 256×256×128 1,160,038 15.83 (100%) 9.76 (56.73%) 1.59 (0%)

Lobster 301×324×56 190,815 3.18 (100%) 1.97 (48.20%) 1.52(0%)

Aneurism 256×256×256 114,695 3.78 (100%) 3.36 (76.38%) 2.67(0%)

Skull 256×256×256 775,985 10.39 (100%) 9.29 (88.74%) 4.87 (0%)

Checker Box 100×100×100 1,000,000 20.48 (100%) 6.72 (46.60%) 2.78 (0%)

Figure 9: Timing for rendering different volume data.

c© The Eurographics Association 2003.


