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Abstract

We present an image-based rendering technique to accelerate sur-
faces rendering from volume data. We cache the fully volume ren-
dered image (calledkeyview) and use it to generate novel view with-
out ray-casting every pixel. This is achieved by first constructing
an underlying surface model of the volume and then texture map-
ping the keyview onto the geometry. When the novel view moves
slightly away from the keyview, most of the original visible regions
in the keyview are still visible in the novel view. Therefore, we only
need to cast rays for pixels in the newly visible regions, which usu-
ally occupy only a small portion of the whole image, resulting in a
substantial speedup. We have applied our technique to a virtual
colonoscopy system and have obtained an interactive navigation
through a5123 size patient colon. Our experiments demonstrate an
average of an order of magnitude speedup over that of traditional
volume rendering, compromising very little on image quality.

1 INTRODUCTION

Major efforts have been dedicated to accelerating volume render-
ing, in both a software and hardware approach. One hardware ap-
proach is to leverage existing hardware, especially 3D texture map-
ping hardware, to accelerate volume rendering [3, 8, 29]. However,
3D texture mapping hardware is not scalable and does not support
interactive classification. Another hardware approach is to utilize
special-purpose hardware, such as, VolumePro [24], for volume
rendering. VolumePro can render a2563 volume at 30 frames per
second. However, the performance of VolumePro is still challenged
by large data set. For example, for a5123 data, theoretically only
3-4 frames per second rendering performance can be obtained. Fur-
thermore, the current VolumePro supports only parallel projection.
Many applications, for example, the virtual colonoscopy system in
biomedical application, require perspective projection. Parallel pro-
jection of a straight tube appears as a ring, which prevents us from
examining the interior walls of the colon. With some software de-
sign, VolumePro could be utilized to support perspective projection,
except at great cost of the rendering speed as well as image qual-
ity [16]. A typical data size in a virtual conlonoscopy system is
5123; a straightforward implementation using VolumePro delivers
a much lower frame rate than the interaction requirement when per-
spective rendering is supported.

The software approach includes early ray termination [19], dis-
tance encoding, presence acceleration [1, 6], ray coherence [14],
and shear warping [17]. These methods still cannot meet the inter-
active speed requirement unless they are parallelized on powerful
machines [17, 23].

Recently, image-based rendering techniques have been devel-
oped to model complex scenes using images or sprites instead of
complex geometries, and to render directly from images. One
can pre-compute a group ofkeyviews(or reference images) so that
any novel view can be generated from one (or a subset) of these
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keyviews. This is similar to sampling the full plenoptic function
[21], resulting in 3D, 4D or even 5D image sprites [12, 20]. These
methods usually need a very dense view sampling (thousands of
images), which requires a large amount of memory storage. Dally
et al. [9] use a delta tree to represent all the keyviews.

Even though most of these methods were developed for accel-
erating polygon rendering, their concepts can be applied to accel-
erating volume rendering. Choi and Shin [5] have applied Dally et
al.’s method to render the fully opaque surface of the volume using a
quadtree structure instead. Their method supports only parallel pro-
jection. Even though tens of thousands of reference images are pre-
computed, holes may still appear in the generated image. The near-
est neighbor (zero-order) interpolation has been used for efficiency,
but at the cost of degrading the image quality. Generally, a tradi-
tional IBR method is inappropriate for volume rendering because
whenever the transfer function changes, it is required to regener-
ate the whole set of reference images, resulting in a huge amount
of computation and storage. Gudmundsson and Randen [13] have
proposed to utilize the coherence between neighboring views and to
incrementally generate the novel view. This incremental approach
avoids storing thousands of images. Similar to the above technique,
it supports only parallel projection and the rendering of the fully
opaque surface. In addition, it delivers a degraded image quality
as only a zero-order interpolation is used; similarly, holes may ap-
pear in the generated image. These disadvantages have prevented
these methods from a broad usage in volume rendering. Yagel et
al. [30] have extended Gudmundsson and Randen’s technique to
support flexible volume rendering. Rather than using the incremen-
tal method to directly generate the final image, they only use it to
generate the ”C-buffer,” storing the object-space coordinates of the
first non-empty voxel visible from every pixel. They further use
thus generated ”C-buffer” to accelerate the ray-casting operation
by ”space-leaping” (skipping the empty space). Full rays are still
required to cast into the data. Currently, space-leaping is consid-
ered as a standard optimization technique for ray-casting, together
with several other techniques, such as early ray termination. The
technique to be discussed in this paper will be compared against
the existing optimized ray-casting.

Most recently, more research has been conducted to further ac-
celerate volume rendering using the image-based approach. Brady
et al. [2] have proposed a two-phase approach. This method divides
the viewing frustum into regions (or slabs) based on the Euclidean
distance from the eyepoint. The algorithm then ray-casts each re-
gion separately. The images created from the regions are subse-
quently texture mapped onto polygons (or billboards) and compos-
ited together using conventional graphics hardware. The images
of some back regions are reused for compositing to speedup the
rendering of subsequent frames. A problem with billboards is that
when the viewpoint changes, the pre-generated billboard images
will be shifted with each other. This leads to two unpleasant situa-
tions: (1) holes may appear at the edges of the billboards or (2) the
integrated object may be pulled apart. More recently, Mueller et al.
[22] have reported a scheme to enhance the billboards with depth
information. There, a billboard (or a slab image) is subdivided into
a grid of small tiles and a z-value is approximated for each tile to
form a coarse scale ”z-buffer.” The z-value represents the average of
the nearest and farthest z-values of the object. Apolymeshfor each
slab image is then generated from the ”z-buffer,” which represents a
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Figure 1:Comparison of the images rendered by (a) polygon rendering and (b) volume rendering.

spatial approximation of the underlying object surface. Now, when
the slab images are mapped onto the polymeshes rather than the
planes, the viewpoint is allowed to move further before holes and
artifacts become visible. Nevertheless, this method does not elim-
inate the holes and artifacts completely. While for the translucent
objects, these artifacts tend to be disguised by their fuzzy nature;
they can show up easily for more opaque objects with clear struc-
tures. The main source of these artifacts is the way that the poly-
meshes are constructed and used. First of all, because the polymesh
for each slab stays in the center of the slab, the neighboring meshes
do not attach to each other, which makes it inevitable that holes will
show up when the novel viewpoint moves to the side. For example,
if a box is cut into two slabs, the two polymeshes constructed will
simply be two separate planes in the center of each slab. When
the novel viewpoint moves slightly to the side, the side faces of the
box will be immediately pulled apart. This is immediately visible
for a non-transparent box. However, when the box is transparent
and filled with gel, the artifact may be tolerated longer. Second,
since the meshes are view-dependent, they do not reflect the real
3D topology of the scene. For example, when two separate objects
in 3D space overlap on screen, the polymesh generated will be a
connected mesh. Therefore, when the novel viewpoint moves to
a position where we should see the gap between the two objects,
instead, we will still see a connected object. This situation is es-
pecially problematic for a colonic navigation where holes persist.
Finally, while Mueller et al. have experimented the manipulation
of an object by rotating it back and forth around the keyview, no
continuous navigation has been demonstrated. However, in a con-
tinuous navigation system, the smoothness of the image quality is
desired; the artifacts issue becomes pressingly critical, but more
challenging to solve.

The goal of this paper is to design a novel method solving all
above problems, except we focus on accelerating Levoy’s surface
rendering from volumes [18]. We eliminate dense view sampling
by constructing a 3D model from the volume and utilizing spatial
coherence during the navigation, very similar to [22]. Here, we first
render the volume using the conventional volume rendering and
cache the rendered image as akeyview. For subsequent novel views,
we texture-map the keyview image onto the underlying geometry
and view it from a novel camera position. Although the high level
philosophy here is similar to Brady et al.’s and Mueller et al.’s meth-
ods, the differences are distinguishable, which mainly come from
the mesh we use: (1) We use a view independent full geometry,
which faithfully represents the underlying object surface. It is an
enclosed and integrated mesh, therefore no holes will show up in the

rendering. In addition, the mesh does not require to be constructed
for every keyview (it does need to be reconstructed whenever the
transfer function changes). (2) We utilize this view-independent
full geometry to detect newly emerging scenes on the fly and send
new rays to render these scenes. Furthermore, we utilize the mesh
to detect which part of the object needs to be re-rendered to avoid
poor quality of texture mapping. These operations allow us to con-
trol the quality of the generated image, rather than passively let the
image quality degrades. (3) We employ an adaptive mesh by us-
ing more polygons for the surface with a higher curvature, while
less polygons for a relatively flat surface. This is superior to the
uniform polymesh, which does not adapt to the underlying surface
topology. An adaptive mesh promises better image quality than a
uniform mesh if both use the same number of polygons. This is
very important when we have a limited budget to render polygons,
which is the usual condition. (4) In addition, we have built up con-
tinuous Levels-Of-Detail (LOD) meshes of the 3D geometry so that
we can select a typical level for a practical navigation to fine tune
the performance and image quality. In general, using the model
with more polygons delivers a higher quality image, yet, lowers the
rendering performance (but there is a limit on the image quality
gain by increasing the level of the model).

We strive to apply our technique to a real navigation system
to demonstrate the effectiveness of the technique. We have cho-
sen the virtual colon navigation system as our major application,
even though our technique can be applied to other volume render-
ing systems. Previously, a polygon-based interactive virtual colon
navigation system has been developed [15], where the colon was
represented as a polygonal surface to seek graphics hardware sup-
port. Yet, polygon rendering not only removes small features of
the object but also adds some artifacts caused by the sharp edges
and silhouettes of the polygon surface [28] (See Figure 1a). A di-
rect volume rendering technique can meet physicians’ demand by
directly mapping certain ranges of sample values of the original
volume data to different colors and opacities (See Figure 1b). How-
ever, direct volume rendering, even rendering only thin surfaces, is
very expensive, especially for large size colon data, such as5123.
As we have discussed earlier, it is a paramount challenge even with
the VolumePro support. Mueller et al’s method appears inappropri-
ate for such an application for the aforementioned reasons. Further
efforts have been dedicated to accelerating the volume rendering
using a depth buffer [31] or distance field [28], to skip the empty
space inside the colon, both with a parallel implementation. The
performance achieved still did not meet the interactive speed. Gen-
erating a frame of a patient’s colon of512�512�361 needs about
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Figure 2:Overview of our algorithm.

one second when fully casting512 � 512 rays on an SGI Chal-
lenge using 9 R10000 processors. Our goal is to make this system
interactive on a commodity machine (with only a single processor)
while maintaining the features of direct volume rendering.

In the next section (Sec. 2), we give an overview of our al-
gorithm. After that, we discuss issues involved in the algorithm,
including geometry construction (Sec. 3), texture mapping and
polygon visibility detection (Sec. 4) and strategies of rendering
keyviews (Sec. 5). Finally, implementations and results are demon-
strated in Sec. 6, followed by conclusions in Sec. 7.

2 ALGORITHM OVERVIEW

The central idea of our algorithm is to texture-map the volume ren-
dered image, orkeyview, onto an underlying geometry constructed
from the volume to speedup the generation of novel view. Figure 2
illustrates our algorithm. During the preprocessing, we construct
a surface model from the input volume. Intuitively, this surface
model represents the outmost visible surface of the volume deter-
mined by the input transfer function — a mapping from a voxel’s
density to opacity value. Therefore, the iso-value of the surface
model is chosen as the minimum voxel value with non-zero opacity.
Once we have the surface geometry of the volume and the volume
rendered keyview(s), we can use them to speedup the generation of
the novel view(s). The general guideline is that we can texture map
the keyview image onto the geometry and project the geometry to
the novel view position. A critical issue that we strive to address is
to maintain the image quality. When performing the texture map-
ping, holes may appear. We consider two situations. The first sit-
uation is that when the viewpoint changes, the originally occluded
or viewing frustum culled parts in the keyview could become vis-
ible. For these newly visible parts, no textures are available from
the keyview, hence, we have to cast new rays (the red rays in Fig-
ure 3). To achieve this, we detect each polygon’s visibility in the
keyview when performing the texture mapping and render invisible
polygons with a user specified special color (red (or lightly shaded
on black-and-white printing) in Figure 2). The second situation is
that the projection area of a visible polygon may increase greatly
because of the view position change, which leads to a great texture
magnification, resulting in a fuzzy image. To guarantee the render-
ing quality of each visible polygon, we calculate itstexture fidelity,

a parameter factoring the texture magnification. If the calculated
fidelity value is less than a given threshold, we render it in the spe-
cial color as well. Therefore, after the texture mapping, all pixels
having the special color indicate holes. As the final operation, we
scan the frame buffer and cast new rays to fill these holes.

Errors are introduced in this procedure. Depicted in Figure 3,
black rays of keyview (v1) are used to approximate blue rays in
novel view (v2). Apparently, two rays of two views hitting the
same point traverse through different directions and with different
depths, leading to errors. However, if (1) two viewpoints are close
and (2) all rays do not traverse too far, the error caused by this ap-
proximation will be invisible. The first condition is usually the case
during a smooth navigation; the second condition generally holds
for Levoy’s surface volume rendering, where rays traverse only a
short distance before they reach the full opacity. For more general
volume rendering case, the second condition is not valid anymore,
and we could break the volume into slabs as in Mueller et al.’s and
Brady et al.’s methods to ensure the second condition holds within
each slab. In this paper, we will only emphasize on surface volume
rendering.

v2v1

Figure 3:Black rays (dotted) in keyview (v1) are used to approxi-
mate blue rays (dashed) in novel view (v2). The red ray (rightmost)
is the new ray shot in the novel view.
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Figure 4: Different levels of an iso-surface of a CT head (128 � 128 � 113): (a) high level (original) mesh (361,528 triangles), (b) middle
level mesh (168,708 triangles), (c) low level mesh (81,246 triangles).

3 GEOMETRY MODEL

One issue of constructing a geometry model is its accuracy, on
which the texture mapping quality depends. We have some oppos-
ing considerations. A fine detailed geometry will maintain the ob-
ject topology, especially the silhouette, but is slow to render; while
a simplified model enhances the speed of polygon rendering, but
is less accurate. The conclusion is that we need to construct a ge-
ometry using certain level-of-detail to balance between these issues.
Our technique is open to any volumetric surface extraction and sim-
plification method, except that a crack-free method is desired, such
as methods in [25, 32]. If a crack appears in a polygonal model, it
may end up a hole in the final image. Here, we have extended the
method by Zhou et al. [32] to create a crack-free LOD mesh. First,
we represent a volume using an implicit tetrahedra subdivision and
then fuse the adjacent tetrahedra together. This fusion is based on
a user specified error threshold, which defines the maximum devia-
tion of the resulting iso-point after the fusion. Care is taken in the
fusion stage so that the generated tetrahedra representation main-
tains a smooth transition between levels. After that, an iso-surface
is extracted from the tetrahedra approximation, which is automati-
cally simplified, smoothened and crack-free. Figure 4 shows three
different levles of detail meshes (controled by different error thresh-
olds). As we can see, the number of triangles varies greatly (from
361K to 81K) but the topology is preserved. The middle level mesh
is the one that we have used in our implementation in Section 6. It
gives us an appealing balance between overall performance and the
generated image quality.

4 TEXTURE MAPPING NOVEL VIEWS

Texture mapping of a keyview could be achieved using hardware
supported projective texture mapping in OpenGL. However, we
discard this approach because its current hardware implementation
does not test for the visibility of polygons. Occluded polygons in
the keyview are mapped with wrong textures of the front occluding
polygons when they become visible in the novel view. Instead, we
seek to detect the polygon visibility on our own. On the other hand,
to perform texture mapping we will have to compute the 2D texture
coordinates for each vertex. Since this computation involves pro-
jection of each vertex onto the screen, we can automatically obtain
the depth value, hence the visibility test for each vertex becomes
free. We further propose a scheme to perform visibility test of a tri-
angle based only on the visibility of the triangle’s three vertices. As

we will see from the following, our calculation of the visibility and
the texture fidelity of a triangle is independent of the novel view,
we therefore calculate them only once and store the result together
with each keyview.

In Figure 5, all three vertices1; 2 and3 of the shaded triangle are
first projected to the keyviewv1 using its projection matrixM1 to
obtain their screen coordinatest1; t2 andt3, which are used as tex-
ture coordinates. The triangle is then re-projected using the novel
view projection matrixM2 during the texture mapping. To ensure
projective-correct texture mapping, we use homogeneous coordi-
nates for texture coordinates. This has been discussed in detail in
[10].

M1 M2

v2 (novel view)v1 (keyview)

1

2 3

t1

t2
t3

1’

2’ 3’

Figure 5:Texture mapping.

When assigning texture coordinates for each triangle, we have to
determine whether the keyview is a valid texture source. First, we
test whether the triangle is visible in the keyview. If yes, we fur-
ther evaluate its texture fidelity and test whether it is greater than a
certain threshold. Only succeeding these two tests, will the triangle
be texture mapped with the keyview image; otherwise, it is drawn
in the special color indicating a potential hole. Notice that most of
the previously invisible triangles remain invisible in the novel view;
therefore, holes only occupy a small portion of the novel frame.

In OpenGL, drawing a triangle using a uniform color requires
flat shading. Intuitively, we need to switch the shading mode be-
tween flat shading and texture mapping according to the visibility
of the triangle. This mode switching reduces the efficiency of trian-
gle drawing. One candidate solution is to organize the whole trian-



gle list into a visible and an invisible list. We render these two lists
successively and switch the rendering mode only once. However,
this is not an appealing approach because whenever the keyview
changes, we have to reorganize the lists. Instead, we adopt a sim-
pler approach. Before we load a keyview into the texture memory,
we overwrite the texel at(0; 0) (the origin of the image) with the
special color. For an invisible triangle, we specify all its three ver-
tices with the same texture coordinates(0; 0). The triangle is thus
uniformly filled with the special color.

The visibility of a polygon in the keyview falls into four cat-
egories: (1) fully visible; (2) fully occluded or viewing frustum
culled; (3) partially occluded; (4) partially viewing frustum clipped.
During the texture mapping, a partially occluded triangle is simply
drawn in the special color without using the texture corresponding
to the visible part, similar to Chen et al. [4]. This is because achiev-
ing that would require visibility clipping on the triangle — subdi-
viding the triangle into visible and invisible children triangles — as
described by Debevec et al. [11]. Performing this visibility clip-
ping on triangles is not only expensive, but also generates too many
small triangles and has to be performed for every keyview. Nev-
ertheless, if a triangle is partially clipped by the viewing frustum,
we desire to make use of the partially visible texture. This becomes
very important for virtual colon navigation, where the camera is
very close to the colon wall, such that these clipped triangles are
usually the closest to the camera, having large projections on the
screen. Merely invalidating texture mapping for the whole triangle
leads to big holes. Our solution is to overwrite the border of the tex-
ture image as the special color and specify the texture mapping pa-
rameter as CLAMP in the calling functionglTexParameter(). The
viewing frustum clipped part of a triangle has texture coordinates
outside the range [0,1], which is clamped to the border color (now
special color); while the non-clipped part is still correctly texture
mapped.

To accurately detect the visibility, we need to scan-convert the
whole triangle, and for each pixel inside, we determine its visibil-
ity, the same as z-buffer testing. This is obviously too expensive to
perform. Instead, we only detect its three vertices. Only when all
three vertices are visible is the triangle considered visible. See Fig-
ure 6, where triangles 3, 4, and 5 both have a vertex occluded and
are treated as invisible. But this detection fails for triangle 2, where
it is partially occluded but none of its vertices is, such that it is erro-
neously determined as visible. Fortunately, our experiments show
that this is very rare in a real data set, with only a few occurrences
during a long navigation.

1 2

3
4

5

Figure 6:Visibility detection.

For each keyview, we generate and store itsz-buffer for visibility
detection. A vertex is projected onto the keyview projection plane
and its depth is compared with the correspondingz value in thez-
buffer. Thez-buffer for a keyview can be generated in two ways:
as a by-product of ray casting by detecting the iso-point when sam-
pling along the ray, or by rendering the underlying geometry at the
keyview camera position and reading out thez-buffer. We adopt the
latter approach since the depth buffer can be utilized to accelerate
ray casting by quickly skipping empty space (space leaping).

One issue for using thez-buffer is that a vertex is usually pro-
jected to a non-grid point on the keyview screen. Using az-buffer
value at the closest grid position does not always give us correct
visibility because thatz value can represent the neighboring trian-
gle. Interpolating among neighboringz values is also inappropriate
because they can represent disconnected objects. To better solve
this problem, we evaluate the following equation:

jZvertex � Zbufferj < � (1)

whereZvertex is the calculatedz value of the vertex,Zbuffer is
the z buffer value at the closet grid point, and� is the specified
”thickness” of the visible surface. As long as Equation 1 is true, the
vertex is visible. Yet, this evaluation may appear too conservative
for certain situations. For example, when a visible plane is almost
perpendicular to the viewing plane, two distant points on the plane
projecting to a similar screen location may have a great z difference.
The above evaluation may mistakenly detect one vertex as invisible.
We argue that in this situation planes project to a very small area,
such that even we falsely take the area as a hole the extra ray-casting
effort is little.

To detect whether a triangle is clipped by the viewing frustum
in the keyview, we check its 2D vertex projections on the keyview
plane. If any of them is beyond the clipping window, it indicates
that the triangle is partially clipped.

When a triangle is detected as visible in the keyview, we need to
further evaluate its texture fidelity. Here, our metric is the texture
magnification, or scaling factor as in [7]. While we could use the
same scheme as in [7] to compute the scaling factor for each trian-
gle, instead, we use a static and faster, but more conservative ap-
proximation. We calculate the angle between the keyview direction
and the triangle normal, which can be approximated by a simple dot
product. The larger the angle, the lower the texture fidelity.

5 RENDERING KEYVIEWS

Keyviews are fully volume rendered, either on-the-fly or during pre-
processing. Because keyviews are used to generate novel views,
we can not support a view dependent specular lighting model in
keyview rendering. Instead, we employ a purely diffuse lighting
model. This is a common choice for most of the IBR methods. Fur-
ther, during the texture mapping, we use DECAL mode in calling
theglTexEnvf()function to avoid superimposing any lighting effect.

To render the keyview on-the-fly, one issue is when to render it.
When the novel view moves away from the keyview, more invisible
polygons get exposed, resulting in larger holes; therefore more ef-
forts is required for ray-casting. For every novel view, we evaluate
the hole area percentage; that is, the ratio of the number of new
rays to the area of object occupancy on screen. When the hole area
percentage of a novel view is beyond a given threshold, we decide
to render a new keyview.

Alternatively, we can pre-render a group of keyviews during the
preprocessing so that any novel view can be generated from one (or
a subset) of them. Thus the system never has to ray-cast the whole
volume during the navigation. In contrast to previous image-based
rendering methods [12, 20], the number of keyviews can be greatly
reduced, since we take advantage of a full underlying 3D geometry
(in Lumigraph, only a coarse 3D model is used). The major issue
in pre-rendering is where to place keyview cameras. It remains an
open problem to determine for a given 3D model, the minimal set
of keyframe images, such that for all novel viewpoints, a correct
image can be obtained by combining the keyframe images [27].
This statement also applies to volume representation. However, full
coverage of the model by keyviews is not our goal, since we can
detect holes and fill them by casting new rays on the fly.

There are different strategies for placing keyview cameras, de-
pending on the navigation style. Figure 7 illustrates the keyview
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Figure 7:Distribution of keyviews around the object.            

Figure 8: Placing keyview cameras along the skeleton. The line
is the smoothened skeleton line, and the dots represent the camera
locations.

camera configuration when examining an object from the out-
side. Here we place a sphere around the volume, and the cam-
eras evenly on the sphere with cameras all pointing at the cen-
ter of the object. Given the novel view (a camera position and
view direction) shown in Figure 7, the view vector intersects the
sphere at point(�; �). There are several ways of utilizing the sur-
rounding keyviews,c11; c12; c21 or c22 to generate the novel view
(�; �). One option is to render the object multiple times using each
keyview in turn and blending the results. The blending method
not only creates too fuzzy an image, but also is very expensive to
perform. We determine, instead, to render only once by choos-
ing the closest keyview for each polygon. We determine the clos-
est keyview for each triangle by comparing the angle between the
polygon normal and the view vector of each surrounding keyview.
In our implementation, we only test against the four neighboring
keyviews for efficiency.

The virtual colon fly-through has a different navigation style. A
critical issue is where to place keyviews so that we can most ap-
propriately capture the entire colon. There are different ways to
specify keyviews along the center line: either interactively specify

them during the initial navigation, or automatically assign keyviews
based on the curvature of the center line. The first approach is very
tedious for the user. We have adopted the second approach. We
place more cameras where the curvature of the center line is high.
In addition, we limit the maximum distance between two neighbor-
ing cameras to guarantee better coverage for a long straight path.
One issue is that the provided center line is defined on the grid
point, so it has too much local noise. It is inaccurate to calculate a
curvature from the local values. Our solution is to first apply a low
pass filter to smoothen the curve and then calculate the curvature
from the local points. For low-pass filtering, we convolve the cen-
ter line twice with a box filter of width 3. Figure 8 shows the result
of camera placement. Because of the 2D projections, it does do not
reflect the overall curvature in 3D.

6 IMPLEMENTATIONS AND RESULTS

We have implemented our framework on an SGI Challenge
equipped with an Infinite Reality engine, 3GB memory, and 16
R10000 processors. However, in our experiments, only one R10000
processor is used. We have applied our algorithm to different data
sets: a CT head (128 � 128 � 113), a CT scan of a plastic pipe
(512� 512� 107), and a patient’s colon (512 � 512 � 361). The
plastic pipe has a radius of 20mm. To simulate colonic polyps, three
small rubber objects of size 7mm, 5mm, and 3mm are attached to
the inner surface of the pipe.

We have experimented with accelerating two kinds of volume
navigations: examining the CT head from the outside, and flying
through the pipe/colon. Renderings on a CT head create images
of 256 � 256 resolution, while512 � 512 resolution images are
created for pipe and colon data sets. The ray-casting method we are
to compare against is the optimized version as in [28]. The same
ray-casting routine is used in our hole-filling procedure to guarantee
a fair comparison. We have used perspective projection for all the
rendering.

Our results have shown that our method can deliver high speedup
while maintaining image quality. Because our image-based vol-
ume rendering is divided into two steps, polygon rendering and
ray-casting, the rendering speed has to do with two facts: the com-
plexity of the polygon model and the transfer function ramp, which
determines how far a ray traverses the data before it reaches full
opacity. We have used a moderately simplified surface model as
in Figure 4b for the CT head data (Figure 9); but a non-simplified
surface model for both colon (Figure 10) and pipe (Figure 11) data.
We used a linear ramp between 45 and 65 as the transfer function
for the CT head, which means that the opacity is zero below 45,
changes from zero to one (indicating full opacity) from 45 to 65
and remains one beyond 65 (maximum voxel value 255). For the
plastic pipe data, we used a linear ramp between 30 and 80, while a
linear ramp between 30 and 100 is used for the colon data. The iso-
value of the surface is set to 45, 30 and 30 respectively for the three
data sets for constructing iso-surfaces. Figure 9 – 11 shows that
when rendering a novel view we only need to cast rays for a very
small portion of the image. For all these data, we have obtained an
average of a magnitude of speedup over the optimized volume ren-
dering (all the timings listed in the captions are average timings).
In the mean time, the filled pixels match well with the surrounding
texture mapped pixels. Figure 9e justifies this by showing an inten-
sity scaled-up difference image between a volume rendered novel
view and our image-base rendered view. The calculatedMean
Square Errors(MSE) of the image is 0.012.

We have successfully applied our algorithm to the virtual
colonoscopy system. Our experiments were conducted on top of the
original polygon-based prototype system. In virtual colonoscopy,
image fidelity is considered a top priority. Therefore, the underlying
geometry has not been simplified. Since both view-frustum culling



and occlusion culling, by taking advantage of the twisted colon fea-
ture, have been applied to the surface model during the rendering,
the model can be rendered very efficiently. The navigation is per-
formed in the same style as in the previous surface colonoscopy
system [15]. Without clicking the mouse, the camera will automat-
ically fly through the colon along the center line. A mouse clicking
will impose a force to influence the moving speed and direction of
the camera. The speedup obtained from our algorithm is substan-
tial. Figure 12 illustrates the timing of an interactive pipe navigation
when keyviews are rendered on the fly. The hole area percentage is
set to 1.5%. 32 out of 467 frames are fully volume rendered and
used as keyviews, yielding a keyview update ratio of 7.4%. The
average rendering time of the keyviews is 1.9 seconds per frame,
which includes the time for calculating the visibility map. For clar-
ity, the keyview rendering time is clamped on the graph. The av-
erage rendering time for novel views is 0.17 seconds, indicating
more than an order of magnitude speedup. The keyview update ra-
tio depends on the user’s navigation path and the underlying object
structure. If the user makes a sudden turn, or more small features
of the object emerge, it will demand the keyview be updated more
frequently. Figure 12 also shows the timing of the two rendering
steps: texture mapping and filling holes. The texture mapping time
is dependent on the complexity of the underlying geometry within
the current view frustum, with an average of 0.08 seconds, which
includes the frame-buffer loading time of 0.02 seconds; time for
filling holes is also view dependent, with an average of 0.11 sec-
onds. The total time of each frame is the sum of two components.
For the keyview, the texture mapping time component represents
the total time of the polygon rendering (used for accelerating ray-
casting) and calculation of the triangle visibility map. The average
time for calculating a visibility map is 0.18 seconds per frame. This
justifies the benefits of pre-calculating the visibility.

A delay in keyframe rendering causes jerky navigation. There-
fore, we pre-render keyviews and calculate their visibility maps in
advance. The keyviews are positioned according to the method de-
scribed in Section 5. Figure 13 illustrates the rendering time of an
interactive pipe navigation using 100 pre-rendered keyviews. The
rendering is smoother than rendering a keyview on-the-fly. Nev-
ertheless, the rendering time depends on the navigation path. Be-
tween frame 220 and 260, the rendering time increases abruptly;
this is because the user has made a sudden maneuver in turning the
camera to the colon wall. Since currently all keyviews are rendered
with the camera pointing along the center line, a view facing the
wall benefits little from the keyview, resulting in big holes to fill.
After the user changes the camera back to following the center line
direction, the rendering time drops again. Another time increase
around frame 390 is caused by a similar camera turn. Similar ex-
periments have been done on a patient’s colon data set. Because
of the complex colon wall, we have used 200 keyframes to capture
most of the inside structure. The rendering time is captured in Fig-
ure 14. The average rendering time of our method is 0.33 seconds
per frame, while the average rendering time for volume rendering
is 3.6 seconds.

We also evaluated how rendering benefits from increasing the
number of keyframes for the same object. The rendering time of a
CT head navigation with a pre-defined path using a different num-
ber of pre-rendered keyviews (6, 14 and 26) is plotted in Figure 15.
Keyviews are placed according to Section 5. For a 6 keyview con-
figuration, two keyviews are placed on the north and south poles of
the sphere, and the remaining 4 are evenly distributed on a 0 de-
gree latitude. For a 14 keyview configuration, we add another two
latitudes, and again another two for 26 keyviews. The navigation
rotates the CT head around x, y and z axes consecutively. The aver-
age rendering time for 6, 14, and 26 keyviews is 0.16, 0.11 and 0.09
seconds, respectively. When the number of keyviews increases, the
rendering becomes not only faster, but also smoother. There is a

limit in speed benefit when increasing the number of keyviews. For
26 keyviews, the average percentage of new rays to the whole im-
age is 1.0%. A further increase in the number of keyviews does not
improve the performance significantly.

7 CONCLUSIONS AND FUTURE WORKS

We have presented an image-based rendering framework for accel-
erating surface volume rendering. We have provided alternative im-
plementation designs and applied them to different volume data sets
and different types of navigation. Its successful application to the
virtual colonoscopy system has clearly proven the effectiveness of
our approach. Our experiments have demonstrated an order of mag-
nitude speedup over the existing optimized volume rendering while
delivering visually indistinguishable image quality. The rendering
speed and the image quality can be tuned by employing different
levels of detail of the underlying surface geometry. Even though
we have done our experiments on workstations, a modern PC could
be sufficient for delivering similar performance using our method.
Today’s PC equipped with the commodity graphics card can meet
our computation requirement.

When rendering keyview on-the-fly, our most important future
work is to address the variable latency caused by rendering the
keyframes. One on-going work is to predict where the next keyview
position will be and to amortize the keyview rendering among the
successive novel view rendering. Another future experiment is to
cache the previous keyviews for reuse. This caching will especially
benefit the situation when the user moves back and forth to examine
a particular part of the object. To alleviate the time increase when
the camera turns toward the colon wall, one candidate solution is to
generate multiple keyviews at each selected keyview position. Be-
sides generating keyviews pointing along the center line, we also
generate keyviews pointing to the wall; for example, four views
looking left, right, up and down. We are currently experimenting
with this approach.

In the current implementation, we have emphasized on applying
our technique to accelerate volume rendering with narrow transfer
function ramp. As has been briefly mentioned in Section 2, when
the transfer function has a wider ramp (more translucent volume),
we should cut the volume into slabs parallel to the viewing plane
and then composite the slab images. An immediate issue to be ad-
dressed is how to efficiently perform this view dependent cutting
on a surface model. We would also like to know: (1) how thick
should the slabs be so that we can have a balance on the perfor-
mance and the image quality, and (2) do we always have to render
the whole slabs or can we still perform early ray termination, and
how. Finally, a general issue worth addressing is to design more
sophisticated error metrics for the on-the-fly evaluation.

One limitation of our method is that whenever the transfer func-
tion changes, we have to reconstruct the mesh. This may become
a bottleneck of our technique. It becomes critical to design a more
efficient surface construction method. Another issue related to the
surface model is its silhouette, which is critical to the image qual-
ity [26]. We are currently investigating techniques to improve the
silhouette of the model while conducting a more aggressive simpli-
fication for the inside.
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(a) (b)

(c) (d) (e)

Figure 9: Two views during an interactive CT head navigation (image resolution:256� 256): (a) fully volume rendered keyview, (b) fully
volume rendered novel view (rotated 20 degrees, 3.5 secs), (c) the same novel view after texture mapping the image (a) onto the surface
model in Figure 4b with unfilled holes (colored red – see color in color plate, 0.07 secs), (d) after filling the holes in (c) (c+d: 0.16 secs),
(e) intensity-scaled-up difference image between (b) and (d) (scale factor: 5, MSE: 0.012).

(a) (b) (c)
Figure 10: Two views during an interactive colon navigation (image resolution:512 � 512): (a) fully volume rendered keyview (3.6 secs),
(b) texture mapped novel view with unfilled holes (colored green — lightly shaded on black-and-white printing, 0.09 secs), (c) after filling
the holes in (b) (b+c: 0.3 secs).



(a) (b) (c)
Figure 11: Two views during an interactive pipe navigation (image resolution:512 � 512): (a) fully volume rendered keyview (1.9 secs),
(b) texture mapped novel view with unfilled holes (colored green — lightly shaded on black-and-white printing, 0.08 seconds), (c) after
filling the holes in (b) (b+c: 0.17 secs).

0 100 200 300 400 500
frame

0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e 

(s
ec

)

texture mapping
ray casting
total time

Figure 12: The rendering time of an interactive pipe navigation
using on-the-fly keyview rendering (also in color plate).
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Figure 13: The rendering time of an interactive pipe navigation
using 100 pre-rendered keyviews.
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Figure 14:The rendering time of an interactive colon navigation
using 200 pre-rendered keyviews.
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Figure 15:The rendering time of an interactive CT head naviga-
tion using different number of pre-rendered keyviews (also in color
plate).


