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ABSTRACT

In this paper, we introduce an online video-based system that active-
ly assists users in assembly tasks. The system guides and monitors
the assembly process by providing instructions and feedback on
possibly erroneous operations, enabling easy and effective guid-
ance in AR/MR applications. The core of our system is an online
video-based assembly parsing method that can understand the as-
sembly process, which is known to be extremely hard previously.
Our method exploits the availability of the participating parts to sig-
nificantly alleviate the problem, reducing the recognition task to an
identification problem, within a constrained search space. To further
constrain the search space, and understand the observed assembly
activity, we introduce a tree-based global-inference technique. Our
key idea is to incorporate part-interaction rules as powerful con-
straints which significantly regularize the search space and correctly
parse the assembly video at interactive rates. Complex examples
demonstrate the effectiveness of our method.

Index Terms: Computing methodologies—Computer graphics—
Mixed / augmented reality

1 INTRODUCTION

Consumer products now often come in parts, to facilitate their pack-
ing and transportation. Consequently, assembly guides are required,
which are typically in the form of textual descriptions, figurative
illustrations, and how-to videos. These are passive means, in which
users parse and follow the instructions but lack feedback on their
misinterpretations or misunderstandings of the ongoing assembly
process. In this paper, we introduce an active assembly-assistance
means, i.e., an online video-based system that actively guides and
monitors the assembly process. The video-based active guidance
system facilitates the user assembly tasks and provides feedback on
possibly erroneous operations (see Figure 1).

The analysis of video assemblies is challenging since it requires
visual identification of the individual parts, understanding their rela-
tionships and tracking assembly configurations. Despite the algorith-
mic progress in the last two decades, such tasks are still extremely
difficult due to ambiguity in the identification and tracking of objects
as observed in a video. Our method utilizes the participating parts
availability to greatly alleviate the problem, mainly by reducing the
recognition task to one of identification within a constrained search
space. Nevertheless, the identification of parts and particularly their
interactions in an assembly from a video remains an ambiguous and
ill-posed problem.

To further constrain the search space, and understand the observed
assembly activity, we introduce a tree-based global-inference tech-
nique. Our key idea is to incorporate part-interaction rules (PIRs)
as powerful constraints which heavily regularize the search space
and aid in correctly parsing the assembly video at interactive rates.
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Figure 1: The interface of our system, telling the user the next part to
choose and the way to assemble. The inference tree visualizes the
parsing process.

The participating parts and their interaction rules are prescribed
and represented in a database of 3D shapes and their list of viable
interaction rules. A PIR is defined once at a cost that is amortized
over the usually massive instances of a manufactured product. It
should be stressed that 3D (digital) models of physical objects are
now an integral part of the product’s design and manufacturing loop
and thus are readily available.

We present an inference tree scheme for leveraging the prior
knowledge of participating parts and their associated PIRs. The
inference tree tracks the assembly process in a stochastic manner
and adheres to the correct interpretation in cases of user action am-
biguities. Rather than taking a deterministic approach, the inference
tree maintains multiple potential interpretations of the assembly
configuration at a current observation, and evaluates the likeliness
of the different tree paths. As the user proceeds with the assembly
process, additional evidence is collected helping to infer the correct
interpretation of the assembly state. Thus, the inference tree reflects
the system’s certainty in the interpretation of the current assembly in
the video. As more object parts and assembly actions are introduced,
branches in the tree may be pruned if they conflict with the new
observations and PIRs (see Figure 2 blue squares). The idea of
aforementioned inference scheme is similar to the stochastic activity
parsing method introduced in [12], which uses syntactic pattern as
constraints for handling ambiguities of temporal events, while our
method requires to parse both spatial (part interaction rules) and
temporal (order of active parts) configurations.

We demonstrate an active guidance system based on the proposed
assembly video parsing method. Our system detects with high
probability the current assembly configuration and provides next-
step suggestions and error-corrections at interactive-rates. Thanks to
the global inference with PIRs as constraints, our system produces
faithful instructions with only RGB inputs.

1.1 Related Work

In the following we briefly discuss previous works related to assem-
bly guidance and assembly parsing.
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Figure 2: A video-assisted tricycle assembly. Video frames (top left) depict an excerpt of the user actions during an assembly sequence. The
system identifies parts, understands their assembly activity and resolves possible ambiguities by employing an inference tree (right). The system
monitors and assists the user in the assembly task by generating a 3D model of the assembly sequence (bottom left) .

multiple figures, depicting the current state of the model and where
the next part goes. These types of instructions are common for
toys (Legor) and furniture (IKEAr) as well as in ”how-to” videos
(Youtuber, HowStuffWorksr). We refer to Agrawala et al. [1] for
a comprehensive survey on design principles and technical visual-
ization of assemblies.

Tang et al. [24] developed an AR system to aid simple Duplo
assembly tasks by displaying 3D object interactions within the user’s
field of view. Antifakos et al. [3] describe a system which applies
sensors to furniture parts and allows the computer to monitor the
assembly process and to interactively guide the user. Molineros et
al. [19] put markers on parts to track their assembly. They were
similar to us, in that they used an assembly graph, (known as liaison
graph in robot assembly planning [20]) which represents all feasible
assembly operations and reduces the system’s degrees of freedom.
Nevertheless, these AR systems are mainly concerned with the
challenge of displaying the instruction plan to a user. Mohr et
al. [17] proposed a system which automatically transfers printed
technical documentation to 3D AR. The 3D model is registered
to printed documentation with minimal user input, and presents
the information from the static documentation in 3D. It analyses
assembly information from static documentations, while our system
processes assembly videos with PIRs and global inference.

Video tutorials present the user with recorded videos of assembly
steps. Pongnumkul et al. [21] present a system that assists the user’s
work along video tutorials. They detect important events in the video
using a simple analysis of Pause-and-Play events and link them to
the user application. Jota et al. [13] present StereoBlocks, a system
which captures physical objects put together by the user to generate
their virtual 3D digital replica. Their system captures simple block
assemblies using a Kinect depth camera in a calibrated scene. Simi-
larly, Miller et al. [15] present a system for interactive construction
and modification of 3D block models captured by Kinect using a
calibrated grid to reduce DOF. Within this line of research, Gup-
ta et al. [8] recently introduced DuploTrack, a system that tracks
the assembly process of a snap-together block model using Kinect.
The system is able to follow a predefined assembly sequence and
provide appropriate feedback. These works share a similar goal of
assembly analysis and enhancement. Nevertheless, they are limited
to simple Lego-like assemblies or within constrained setups. Due to
their widespread use, we focus on casual videos depicting general
assemblies.

Assembly Parsing 3D models and their relationships have been
explored for object recognition from 2D images since the pioneering
work of Brooks [4]. Recent advances in 3D acquisition and the
rapid expansion of 3D shape repositories have attracted renewed
attention on geometric 3D reasoning for object recognition [11, 26].
In recognition of scenes or complex objects, the spatial layout is

often used to regularize the solution [6, 9]. AR applications can
benefit a lot from the registered 3D information, for example, Mohr
et al. [18] proposed a system to retarget complex video motions into
3D AR tutorials, by registering video object with its 3D model.

Hejrati et al. [10] propose a compositional representation using a
small number of local templates for 3D object recognition in images.
Desai et al. [7] model human and object interactions using a flexible
mixtures-of-parts structure. Their model encodes articulated parts
relationships using a flexible spring model. Southey et al. [23]
identify the most likely 3D recognition result by accounting for
viable 3D spatial relationships. Thus, 3D relationships are utilized
to adjust detection confidence scores and to improve the resulting
precision. Choi et al. [5] capture 3D spatial relationships using a
geometric model for indoor scene understanding. The problem is
formulated as an image parsing optimization which yields a parse
graph that best explains the image. Similar to these works, we
utilize parts interrelations to regularize and reduce the solution space.
Nevertheless, our method focuses on assemblies which are typical
and therefore can be efficiently governed by a compact set of rules.

CAD models have been extensively explored in the context of
assembly analysis [16, 22]. In their work, Mitra et al. [16] infer
motions of functional parts from a static assembly by analyzing
the geometry and interrelations of parts. Similarly, Shao et al. [22]
introduce a part-based assembly analysis which is effective in re-
covering shape dynamics from sparse 2D sketches. In contrast, our
algorithm works the other way: given a video of parts that are as-
sembled, we recognize the individual parts and their interactions.
Thus, part recognition turns the video into a parsed dynamic 3D
scene, and naturally enables the generation of “how things assemble”
visualizations.

2 SYSTEM OVERVIEW

Our principal goal is to understand online and to parse an assembly
video. Thus, we may monitor and assist users in their assembly tasks,
providing guidance, annotations and a 3D model reconstruction of
the sequence.

The input is a raw video footage capturing assembly activities.
We assume the participating 3D parts are known a-priori and stored
in a part DB, accompanied by a list of simple rules describing viable
parts interactions. At the core of our method, is an object-space
video analysis algorithm that utilizes the geometry of participating
3D models and their interrelations, defining an inference scheme that
helps to interpret the observed activity in the video. The algorithm
involves a combination of low-level and high-level video analy-
sis methods based on 3D template fitting for object identification
together with 3D object-space assembly processing and inference.

When a new part is presented (denoted active part), it is identified
by fitting 3D candidates onto the video frames. The identification



of active parts is imperfect. Therefore, each candidate is assigned
a confidence value (see Figure 2). For each candidate, we then
assess its interaction positions with the current assembled object
(denoted assembly configuration). Also here, parts target positions
and interactions are also ambiguous. By applying part-interaction
rules (denoted PIR), we reduce the search space and infer with higher
confidence the current assembly candidate configurations.

In Section 3, we elaborate on the object-space assembly step,
where we apply PIRs from our DB and assemble together 3D object-
parts. PIRs prescribe a restricted set of viable orientations and
positions which define pairwise interactions between parts. Given
a rough guess of the position of the active part in proximity of the
assembled object, we explore the PIRs and suggest to potential
matching assemblies. In object-space, we then assemble 3D part
candidates into a set of valid configurations with respect to the
compound 3D object, as suggested by the prescribed rules (see
Figures 3 for an example).

The multitude of active part candidates and matching assemblies,
yields a set of assembly configurations. We encode these configura-
tions in a tree-like structure (denoted inference tree), where different
paths correspond to viable configurations. For each configuration,
we evaluate its plausibility by registering the respective compound
3D model with the video frames and calculating their confidence
scores.

The main challenge stems from the fact that assembly video
sequences are typically noisy and may contain substantial occlusions.
This results in rather low confidence levels while parsing the video
even when parts are correctly identified. Therefore, we cannot trim
false positives simply by a confidence threshold. Instead, we make
conservative decisions at each step, and keep a set of active part
candidates with even low confidence levels. False positives are
then pruned by the inference scheme once enough information is
accumulated over time. Note that pruning is based on an aggregated
assembly confidence rather than making local decisions in each
frame independently. By taking the assembly sequence history into
account, the robustness of the algorithm increases.

3 METHOD DETAILS

3.1 DB Creation
We build a database of 3D parts {P} which correspond to parts in
our video sequences, and a part-rule database {R} prescribing the
valid inter-relations between parts (Figure 3). These 3D models
are now typically an integral part of a product’s design and manu-
facturing loop and readily available. In other cases, we create the
corresponding 3D shapes using a modeling tool (e.g. Mayar) or
from publicly available repositories. Thus, 3D parts {P} serve as
the base elements of assembly configurations and may be reused, if
applicable, for several videos.

Part-relations are defined as joint position and orientation con-
straints between 3D parts in space. Note that we do not require
the 3D parts to be accurate replicas of the their video counterparts.
Instead, 3D parts should merely resemble parts in the videos so that
they are discernible and assemble together well.

3D parts in the repository are used to identify active parts and
estimate their position in the video frames. We associate each 3D
part with a set of 2D templates Θ by projecting it onto 2D from 1000
views densely sampled on a 3D sphere centered around it. Each
view associates with a pose of six degrees of freedom (DOF) for
the 3D part. We also pre-compute the gradient maps GΘ for the 2D
templates using a Sobel filter and keep the top 20 strongest gradient
magnitudes in each template. To speed up the template matching,
we may store the 2D templates in a two-level hierarchy: a coarse
level, using a subset of 200 views uniformly sampling the 3D sphere,
and a finer one of 1000 views.

3D parts assemble by connecting together in a common region
(denoted site). Specifically, for a part P we denote its site SP (note

Figure 3: An example of PIRs. Rules define compatible assembly
interactions between different sites (interfaces of parts). The same
compatibility from different parts can be snapped together. The face
vertices determine the transformation between two sites.
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Figure 4: The inference tree. At time t, active part candidates (the
triangle and the star) are detected and assembled with the compound
model at time t−1 (the circle). The new compound model candidates
are then reinforced and tracked with video.

that a part may have several sites which can be used to interact with
multiple parts), we attribute each site S with a major orientation OS
and an anchor point AS, for prescribing respectively, the connecting
orientation and location of the site in the assembly.

Thus, PIRs define pairs of parts (Pi,Pj) connecting together with
respect to specific sites Rn := (SPi ,SPj ). To connect two parts w.r.t.
their sites, we compute the transformation TRn that translates and
aligns their sites. These rules encode intrinsic relation properties
between 3D parts and can now be computed automatically using
existing solutions [2, 16, 22]. In our work, we follow commercial
guides and extract rules simply by selecting corresponding sites on
the 3D objects. In Figure 3, the list was automatically generated
from user selections.

3.2 Online Inference Model
Typically, assemblies are carried out by introducing a part Pt at time
t and assembling it with the current model At−1, resulting in a new
assembled model At = At−1⊕Pt . However, accurate recognition of
parts and their assembly are error-prone due to occlusions and noise
in the input video.

To deal with possible errors, we adopt an online inference strategy
that utilizes joint observations from part detection, interaction and
tracking in the assembly sequence. Specifically, given a model At−1,
the probability of achieving At at time t can be written as:

p(At |At−1) = pdet(Pt)p⊕(At−1,Pt |Rn)ptrack(At) (1)

where pdet(P) measures the detection confidence of a predefined
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Figure 5: Ambiguous assembly configurations. The user’s hands
occlude the assembled model (a), yielding an incorrect assembly con-
figuration identification in the tree (red branch). The configuration is
(typically) of low confidence and pruned out as the following assembly
actions disambiguate it (b).

part P, i.e., the probability that P is the active part Pt in the input
video at time t; p⊕ is the confidence of Pt assembling with At−1
with respect to a predefined rule Rn; ptrack is the probability of
the assembled model At in the video, i.e. measuring the detection
confidence of At in video frame t.

Conditional probabilities in equation (1) can be efficiently rep-
resented by an inference tree as shown in Figure 4. Nodes in the
tree correspond to possible active parts and assembly configurations,
while edges correspond to adding a new active part leading from a
configuration at level t−1 to level t.

By maximizing the conditional probabilities in equation (1), we
can infer the model At with highest probability. Nevertheless, e-
quation (1) expresses the probability for a single assembly action,
generating At from At−1 and Pt . This may be too local resulting in
an unstable system when video data is ambiguous and noisy.

We extend the probability equation across the whole path of tree
in order to avoid local optimal. Thus we solve the configurations
At ,At−1, · · · ,A1 simultaneously:

p(At , · · · ,A1) = Π
t
i=2 p(Ai|Ai−1)p(A1) (2)

The equation (2) corresponds to a path in the inference tree which
maximizes the joint probabilities of assembly operations. That
means we compute the joint probabilities of whole configuration for
probability of current assembled configuration. The advantage of
equation (2) is that for a configuration At−i, i≥ 1, its probability is
reinforced by considering future observations from assembly steps
t− i+1, · · · , t, which is especially helpful for reducing ambiguities
as assembly configurations become more complex and discrimina-
tive when incoming more parts. For example, in Figure 5, due to
user’s hand occlusion (a) an erroneous model is inferred. Neverthe-
less, assembled new parts (b) disambiguate and correct the assembly
detection, as an assembly sequence evolves, more parts assemble
together reducing the space of viable configurations towards the
correct solution.

One big problem of inference is that the tree will grow explosively
when more and more active parts come. As active parts appear in
the scene, multiple 3D candidates are generated using their probabil-
ities pdet(Pt). As parts assemble, we retrieve PIRs with probability
p⊕(At−1,Pt |Rn) yielding in turn multiple assembly configurations
for which we compute the probabilities ptrack(At). The inference
tree may grow in a combinatorial way in time if the generated as-
sembly hypotheses are not pruned, as shown in Figure 4. Such
global computation is unnecessary because of the typical locality
of the assembly process. Thus, we need to prune the tree in order
to make the computation feasible. In our experiments, we observe

that keeping top 5 pathes in inference tree achieves a good balance
between efficiency and stability.

The prune strategy is straightforward. Once the assembly tracking
is finished, we get probability of each term of equation (1), the paths
with low confidence are pruned. Note that we do not simply throw
out active part candidates with low confidence, as they may be
misidentified due to poor active part detection. Instead we consider
the whole information of path, if the joint probability of a path is low,
we prune it. In this way, it will reduce the ambiguity of active part
candidates. In Figure 2, assembled parts which lower the confidence
of an incorrect configuration (in blue square) will be pruned.

3.3 Assembly Video Processing
Our system performs as a three-state machine: 1. active part identi-
fication, 2. PIR-based assembly and 3. assembled object tracking.
When an active part appears in the scene, our system performs ac-
tive part identification. Once an active part is identified and enters
the proximity range of assembly configuration, the state machine
changes to PIR-based assembly, and retrieves PIRs and yields mul-
tiple 3D assembly candidates. After that, our system will go into
assembled object tracking and compute the probability of each 3D
assembly candidates. Note that in each state, one of the probabilities
in equation (1) is generated. These probabilities are added into the
inference tree and paths with low probability are pruned. Thus a
compact inference tree is maintained, enabling online running. Then
our system returns into active part identification for continue.

3.3.1 Active part identification
Our input consists of assembly videos captured by ordinary web-
cams. The videos may be noisy, captured from a non-static camera,
consisting of light variations, occlusions, and camera distortion, etc.
In the low-level video analysis step, we coarsely identify and esti-
mate the 6DOF pose of active parts as they appear in the video. For
efficiency reasons, we avoid the problem of tracking active parts and
instead identify them individually as they appear in the video.

Given a video frame I, we identify active parts by matching 2D
templates from our DB. We use a real-time DOT operator (Line2D)
[11] to detect if an object represented by a set of 2D templates Θ

is in I with 3 levels image pyramids. Note that we skip all pixel
locations of the assembly to avoid existing parts in the assembly
distorting the active part identification.

We compute the gradient map for I denoted GI using the Sobel
filter and select the l = 20 strongest gradient magnitude represen-
tatives in each template. We then convolute the gradient map with
our pre-computed 2D templates gradients GΘ of a 3D part in the DB
and measure the gradient response using DOT:

Φ(I,Θ,c) = dot(GI ,GΘ,c)

where c is the pixel in I, and dot(.) is the DOT detector measuring
the response of I to the template Θ at point c. The specific definition
of dot(.) is as equation (2) in [11].

A 2D template is detected in the image at c′ if the highest gradient
response is above a threshold ε = 0.8 · l:

c′ = argmax
c
{Φ(I,Θ,c)> ε}

Thus, to detect if a 3D part from our DB is in frame I, we match its
2D templates Θ0,Θ1, ... to I utilizing the coarse-to-fine hierarchy
and check if any of them gives a gradient response above ε = 0.8 · l.

Typically, a frame I may yield several active parts candidates due
to occlusions and ambiguity in the part identification. We consider
the DOT gradient response as the identification probability per active
part candidate:

pdet(Pt) ∝ Φ(I,ΘPt ,c
′) (3)

Once an object is identified in a frame, we refine its 3D pose
in object space using its best matching template. Specifically, we



Figure 6: PIR-based snapping. An assembly video (top row), may
yield an ambiguous 3D model configuration (bottom row). PIRs reg-
ularize the 3D search space of active parts and resolve ambiguities
(bottom right) .

can infer the orientation and depth z from the 2D template using its
corresponding view direction and scale respectively. The translation
in x and y can then be computed by:

x =
z
fx
(u− cx),y =

z
fy
(v− cy),

where u and v are the pixel horizontal and vertical coordinates, fx
and fy are the focal lengths of the camera, and cx and cy are the
center of the camera.

3.3.2 PIR-based guidance

As a new active part Pt approaches the current assembly configura-
tion At−1, we search the rules DB for part relations that match the
current configuration and will guide the assembly process. We apply
these rules to the 3D part in object space, and transform it onto the
assembled model yielding a new compound 3D model.

The advantages of applying PIRs are twofold. First, rules regular-
ize the 3D pose of active parts by defining a canonical transformation
which connects the part to the assembly. These rules regularize the
assembly space to be discrete (Figure 6).

Second, by connecting the 3D active part with the assembled
model, we can re-evaluate the compound object as a whole and
reinforce or prune past decisions. Thus, a poorly detected active
part (e.g. due to occlusions) may generate an assembled object of
high confidence, while a well detected active part may lead to a low
confidence assembly (e.g. due to incorrect PIR selection in Figure
5).

Thus, for an active part candidate Pt , we first check whether any
of its assembly sites {SPt} are in the proximity of any of the parts’
sites in the current assembled object {SPa}: ‖SPt −SPa‖2 < r, with
Pa ∈ At−1. The distance is measured between the parts’ bounding
boxes in image space (we use r = 5 pixels in all of our experiments).
For each pair of parts with sites within proximity distance, we check
if their assembly is viable by querying the PIR DB for a rule defining
the interaction between SPt and SPa . Given such a rule Rn(SPt ,SPa),
we apply the corresponding transformation TRn(Pt) which aligns the
active part site SPt to SPa in the assembly, and generates a new 3D
compound model At . Once the active part assembles to the current
assembly, the connecting sites will be disabled from connecting to
parts in the future.

The probability p⊕(At−1,Pt |Rn) is computed with respect to the

Figure 7: Assembly tracking. A partially occluded assembly (left)
leads to incorrect tracking (mid). Taking an hybrid tracking-detection
approach, we recover the correct assembly pose (right) by registering
the 3D model with the frames.

site distance and the required transformation TRn(Pt):

p⊕(At−1,Pt |Rn) = exp(−β‖SPt −SPa‖2)p(TRn) (4)

with p(TRn) measuring the consistency of TRn w.r.t. the estimated 3D
pose of Pt from part detection, β is a balancing parameter which is
set as 0.1. We may ignore the a-priori probability of p(Rn) although
for specific assembly problems it may reflect the expected order of
assembly actions in a sequence and can be trained to reflect their
probability.

3.3.3 Assembly tracking
For each new 3D compound model candidate At , we compute its
probability similar to the active part identification step. Specifically,
we project the 3D model onto 2D and compute its gradient response
using a DOT operator with the video frame. Note that since we
detect and track the compound object’s pose in the video, we need
to project the 3D model onto 2D from a single view. The score
measures the confidence of the 3D assembly configuration with
respect to the current video frame:

ptrack(At) ∝ Φ(I,Apr j
t ,c) (5)

with Apr j
t the projection of At on the image, c is the best matching

location between Apr j
t and I.

As the user interacts and assembles parts, the assembled com-
pound object may be moved and rotated in the scene. Therefore,
we take a hybrid tracking-detection approach to locate and track the
assembled object in the scene, so that the assembled object keeps
registered with video. At the same time ptrack(At) is updated by
leveraging observations from different views.

Given a valid assembly configuration, we adopt the technique
of [25] to register the 3D assembly with video, and to track the
changes when the user interacts with the assembly. [25] solves
the optimal 3D object pose by minimizing misalignment between
image edges and projected model contours, it is fast and suitable for
textureless objects. Nevertheless, this technique is insufficient when
object motion is too large or the object has heavier occlusion (see
Figure 7).

Therefore, we combine tracking with 2D template detection in a
conservative manner. Utilizing the DOT operator, we can infer the
3D pose of the assembled object by registering its corresponding
template with the frame. Thus, we generate in realtime 2D templates
by projecting the assembled 3D model into 2D using its current
pose. We perform such template generations every constant number
of frames (K = 100). Thus, once tracking of the assembly is lost,
we utilize the most current 2D template for identification and re-
localization of the assembly object and resume the tracking process.

When performing tracking, ptrack(At) is updated by selecting
the maximum over time: ptrack(A′t) = max{ptrack(At)|t}, which
prefers the assembly that can get a good match with the video in
different views. This is helpful to reduce ambiguous configurations
that cannot be identified in specific views.



Table 1: Experiment summary

scene name no. of duration no. of POV
parts PIRs

tricycle (Fig. 2) 7 118 sec 5 1st person
lego (Fig. 5) 13 127 sec 1 1st person
chair (Fig. 10) 6 60 sec 2 1st person
house (Fig. 11) 14 150 sec 11 1st person
robot (Fig. 12) 7 135 sec 5 1st person
wood train (Fig. 8) 5 100 sec 4 3rd person
kitchen (Fig. 12) 6 216 sec 4 3rd person

Figure 8: Assembly analysis of a raw Youtube video of a wood toy
assembly (left col.) The identified assembly sequence and active
parts (in red) are showed in 3D (mid column). Inference tree (right)
showing an invalid configuration (blue) is pruned out since assembly
rules do not further apply to it.

4 RESULTS AND DISCUSSION

We evaluate our system on a variety of assembly videos, with ob-
jects from different classes and with different complexity and detail.
We capture assembly videos in an unconstrained setup, using an
ordinary webcam from either a first- or third-person POV. For first-
person POV, the camera is mounted on the forehead of assembly
operator, thus the videos are captured under dynamic viewpoints.
The parsing results under dynamic first-person POV are provided in
the supplementary video. Table 1 summarizes the videos: number
of parts, number of PIRs, camera setup and sequence duration.

Figure 2 depicts the analysis results of our system on a tricycle
assembly sequence. As parts are introduced in the scene, they trigger
our part detection method. As they are attached to the current object,
we search the DB for corresponding interaction rules and generate
an inference tree. Video frames correspond to detected assembly
actions. Due to uncertainty in the video data (e.g. due to occlusions),
ambiguity occurs in detecting the tricycle front wheel positions (mid-
left). We store the two possible configurations as paths in the tree
with different probabilities. Additional assembly actions (mid-right)
help disambiguate this case, pruning out the blue path and selecting
the red path as the highest confidence configuration (right).

In Figure 8, we process a raw Youtubervideo footage of a wood-
en train assembly process. Since we do not have the physical 3D
measurements of the parts, all 3D parts were coarsely approximated.
Nevertheless, our algorithm still achieved plausible reconstruction.
Note that the ambiguity in the tree is pruned out as parts assemble
together and the confidence of the incorrect configuration (blue)
finally decreases as assembly rules cannot apply.

(a) (b) (c)

Figure 9: User feedback for assembly actions. Assembly actions
identified by our system, may be incorrect w.r.t. the target model
(a). Once an incorrect configuration is reliably identified, the system
backtracks to a valid configuration (b) and the user is notified to correct
the assembly (c).

Our video analysis is independent of the assembly order. While
rules merely define pairwise relations, our framework tries to infer
part information from a global assembly configuration and use all
the information available from other parts in the assembly. In this
way, rules progressively constrain the search space, as assembled
parts prune down the number of candidates. See the confidence
values of tree paths in Figure 5.

4.1 Assembly Guidance

For monitoring and assisting the user in the assembly task, our
system tracks the user’s assembly actions from a video camera and
provides online feedbacks with assembly correction and next-best-
part suggestion. For this purpose, in addition to the part-interaction
rules, we store in our DB assembly paths. Assembly paths are easily
achieved by defining PIRs sequences which can be represented by
lists or tree like structures. This means that PIRs are additionally
indexed to encode their order of application in the assembly.

Assembly correction. As the user performs invalid assembly
actions, an appropriate feedback method is issued and the system
backtracks to the last valid configuration. For example, in Figure 9,
the user positions 2 blocks incorrectly, before the system reliably
detects an erroneous configuration (left) and backtracks to the last
valid configuration (middle). Therefore, feedback is provided only
after the configuration is reliably detected.

In Figure 10, we analyze a relatively simple assembly of a chil-
dren’s chair consisting of a seat, four legs, and a back part. How-
ever, this example is still quite challenging as parts are of the same
color and the background consists of a significant colored texture
which introduces significant noise in the recognition and tracking.
Furthermore, the chair legs’ are perfectly symmetrical which in-
troduces further ambiguities in the inference tree. The tree stores
several leg configurations (possibly symmetric) as candidates (see
Figure 10(b,d)) and the best configuration pose is selected. Note that
the last level in Figure 10 seems as different viewpoints of exactly the
same assembly, they are actually different assembly configurations
with the chair back in different sides of the chair base.

Similarly, Figure 11 provides excerpts from a Legorassembly
sequence where the user positions a roof side on the incorrect side
(a) and a roof side is misaligned (c). Our system identifies these
incorrect configurations (see red paths in corresponding trees) and
prompts the user to backtrack and re-assembly again resulting in the
correct assembly sequence (in b and d).

Next-best-part suggestion. In Figure 12, we show excerpts of a
guided assembly of a complex technical Legor robot and a kitchen
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Figure 10: Excerpts from a chair assembly video sequence. As active parts approach the assembled object, part interaction rules infer viable
configurations, yielding a tree of assembly hypotheses (on the right). Ambiguous user actions (c), are corrected and pruned by additional assembly
actions (d). The correct 3D sequence of the assembly is generated (bottom) to guide the user assembly tasks.

toy. Our system infers the correct assembly actions and allows to
the reconstruction of a 3D model counterpart. Thus, the user may
inspect the intermediate objects from an infinite number of views
and zoom. The system suggests at each step, a possible next part
(although typically there may be several). As the user introduces the
new active part, the system provides immediate guidance regarding
its assembly in the current 3D object. User operations are validated
against the predefined set of PIRs and feedback is provided.

4.2 Performance and Scalibility
We evaluate the performance of our system on a PC with a 3.2GHz
Intel i5-3470 CPU and 8GB RAM. The frames used for evaluation
are of 640×480px resolution, larger resolution is not necessary for
processing. Our implementation runs at approximately 10-30fps
depending on the number of different parts and the number of PIRs.
For a typical case of 15 parts and 10 PIRs, active part identification
requires 0.06s, PIR-based guidance requires 0.01s, and assembly
tracking 0.02s. Currently we did not use multi-thread and GPU
acceleration, with better implementation and hardware, the perfor-
mance still can be greatly improved. The performance bottleneck
of our system is the active part detection, which scales linearly with
the number of templates. For the cases with more parts, a more scal-
able part detection method should be adopted. Fortunately, recent
advances in 3D detection provides with potential scalable approach-
es [14], and our system can exploit these approaches by simply
replacing the part detection module.

4.3 More Applications
The proposed assembly parsing method can be used for additional
applications. Note that by registering image objects with 3D mod-
els, our method actually has reconstructed the assembly process
in 3D space, so any 3D operation is enabled. As an example, we
demonstrate an application with automatic generation of annotated
3D animations 1. We utilize the 3D parts, their transformations and
assembly snapping transformations to generate novel animations.
This is extremely useful if alternate views are required to assist the
assembly process. Thus, a user may zoom and further investigate
an assembly process, interactively edit it by replacing parts, editing
sizes and etc.

5 CONCLUSIONS AND LIMITATIONS

We have presented a method for video analysis which allows the
reconstruction of an assembly process and the dynamics of the 3D
model that is assembled. The key idea is a tree-based inference
framework that links the low-level video analysis with higher level
inter-part relational rules. This constrains and guides the system

1Please see the supplemental video for results

Figure 12: Complex assembly monitoring and guidance. Our system
analyzes online the assembly process of a piece of complex technical
machinery (top row) and suggests to the user the next part (in red,
bottom row) and its position in the assembled object.

towards the correct detection and registration solution. Instead of
making decisions based on individual parts, the assemblies encode
inter-part relations and enables the posteriori probabilities of assem-
bly sequences. The decisions are then re-enforced by re-projecting
an assembly of 3D parts into the video frame images and their
re-evaluation in image space.

Limitations.
Our system just receives one active part at each assembly stage,

thus multiple active parts cannot be assembled together at the same
time. Our algorithm cannot differentiate subtle differences in video
frames. The assembly rules may be able to narrow down some
ambiguities, but since the rules do not determine a unique assem-
bly operation, the algorithm can still get confused especially when
the participating parts are symmetric or nearly symmetric (see Fig-
ure 10). We also cannot handle assembly rules which contain some
degree of freedom that span continuous space. It will be very inter-
esting to study how to compute an optimal identification in cases
where the assembly rules do not define a discrete space. Finally,
some assemblies require meticulous and complex actions, e.g. push-
ing, pulling and stretching and simultaneous actions. This poses an
interesting question regarding their PIR representation and detection
of such actions. These issues will be considered in our future works.
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