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A Perception-Driven Approach to Supervised
Dimensionality Reduction for Visualization
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Abstract—Dimensionality reduction (DR) is a common strategy for visual analysis of labeled high-dimensional data. Low-dimensional
representations of the data help, for instance, to explore the class separability and the spatial distribution of the data. Widely-used
unsupervised DR methods like PCA do not aim to maximize the class separation, while supervised DR methods like LDA often assume
certain spatial distributions and do not take perceptual capabilities of humans into account. These issues make them ineffective for
complicated class structures. Towards filling this gap, we present a perception-driven linear dimensionality reduction approach that
maximizes the perceived class separation in projections. Our approach builds on recent developments in perception-based separation
measures that have achieved good results in imitating human perception. We extend these measures to be density-aware and
incorporate them into a customized simulated annealing algorithm, which can rapidly generate a near optimal DR projection. We
demonstrate the effectiveness of our approach by comparing it to state-of-the-art DR methods on 93 datasets, using both quantitative
measure and human judgments. We also provide case studies with class-imbalanced and unlabeled data.

Index Terms—Dimensionality reduction, supervised, visual class separation, high-dimensional data.
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1 INTRODUCTION

High-dimensional data is common in many application domains
such as information retrieval, computational biology, and text
mining. To visualize such data, dimensionality reduction (DR) is a
common strategy to reduce the data dimensions while maintaining
the data features of interest (e.g., covariance and correlation
between the data attributes). The dimensionality reduced data can
then be visualized, for instance, as scatter plots [1].

We focus on labeled data, that is, when a class label is assigned
to each data item. Labeled data, for instance, is common in clas-
sification problems. For such data, “supervised” DR methods [2]
can be used to find good low-dimensional data representations
that seek to maximize the separation among classes. Inspect-
ing how well classes separate in the resulting low-dimensional
representations—usually by means of color-coded scatterplots—
is then a very typical visualization task [3]. Since supervised
DR methods take the class label into account, they usually better
capture the class structures [4] than unsupervised DR methods like
Principal Component Analysis (PCA) [5] and Multi-Dimensional
Scaling (MDS) [6] (see Figure 1(a,b)).

Many different supervised DR methods have been proposed
over the last decades. One of the most popular ones is Fischer’s
venerable Linear Discriminate Analysis (LDA) [7]. However,
LDA often fails to characterize non-linear class structures because
it assumes that each class follows a Gaussian distribution. Other
approaches such as Kernel Discriminant Analysis (KDA) [8] have
been proposed to overcome this shortcoming. Yet, none of the
existing supervised DR approaches takes into account the percep-

• Y. Wang, K. Feng, X. Chu, X. Yu, and B. Chen are with Shandong
University.

• C.-W. Fu is with the Chinese University of Hong Kong.
• J. Zhang is with CNIC, CAS.
• M. Sedlmair is with University of Vienna, Austria.
• Y. Wang and K. Feng are joint first authors.

E-mail: see cloudseawang@gmail.com

tual capabilities of humans, and hence class structures might still
remain hidden for a human observer (see Figure 1(c,d)).

To fill this gap, we propose a perception-driven dimensionality
reduction approach, that seeks to generate faithful, linear 2D
projections with maximal visual class separation. To do so, we
leverage and extend recent work on visual separation measures
that imitate the human perception of class separation, and use
these measures to drive the DR process. Sedlmair and Aupetit [9]
evaluated existing measures in terms of their ability to imitate
human perception, and found that the Distance Consistency (DSC)
by Sips et al. [10] performed best, considerably better than LDA’s
measure. In a followup work [11], they proposed a variety of
new visual separation measures, of which many outperformed all
existing ones. Among the new ones, the GONG measure turned
out to be the best. As it is computationally very expensive, the
authors recommend the KNNG measure as a computationally more
efficient alternative with almost the same separation capabilities as
GONG. What is still unclear, however, is in how far these mea-
sures can effectively guide the DR procedure. Following Anand
et al. [12], we could find interesting projections by randomly
generating many subspaces and ranking these subspaces by the
scores of separation measures. However, such random exploration
may not identify the optimal DR results.

We propose a different approach, perception-driven DR, which
is based on customizing a simulated annealing optimization algo-
rithm [13]. We formulate the perceptual measures into a linear
DR approach and seek a 2×d projection matrix (d is the data di-
mensionality) that maximizes the visual class separation. We then
use the simulated annealing approach to rapidly and efficiently
find a projection that is close to the global maximum in terms of
the separation. As for the separation measures, we use DSC and
KNNG, which have been found to be among the best state-of-the-
art measures, but are still computationally efficient enough for our
purpose. The results of directly using these measures in our ap-
proach are shown in Figure 1(e,f). When designing our perception-
driven DR process, however, we found that current measures lack
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Fig. 1. Comparing the performance of different DR methods (first row) and our proposed methods (second row) in visualizing a 64-dimensional
dataset with four classes shown in different colors: (a) PCA; (b) MDS; (c) LDA; (d) KDA; (e) our perception-driven DR with DSC (PD); (f) ours with
KNNG (PK); (g) ours with density-aware DSC (PDD); (h) ours with density-aware KNNG (PDK). We can see that the four classes are mostly mixed
together in the visualizations produced from the existing methods (first row), though KDA can roughly separate the red and cyan classes. Our
methods (second row) produce visualizations with clearer visual class separation, specifically for PDD and PDK, which use the new density-aware
measures. The GONG scores (see the numbers above) quantitatively confirm this result. Note that (a) and (b) are unsupervised DR methods, while
(c)-(h) are supervised, that is, taking class labels into account.

the ability to properly model the density of classes. Yet, density
has been found to be crucial for the formation of class structures
in the DR process [14], which is one of our goals. To overcome
these issues, we devised two new measures, density-aware DSC
(dDSC) and density-aware KNNG (dKNNG), by incorporating the
distances between points into the measures. Using these two new
measures, we arrived at two new linear DR methods, which we
call PDD (Perception-driven DR using Density-aware DSC), and
PDK (Perception-driven DR using Density-aware KNNG). Their
results are shown in Figure 1(g,h).

We evaluated our approach on 93 datasets [1], comparing it to
six existing DR methods: PCA [5], LDA [7], KDA [8], NCA [15],
t-SNE [16], and random projections [12]. We quantitatively com-
pared our perception-driven DR methods to the others using the
GONG and Silhouette Coefficient (SC) measures. We found that,
for most datasets, our methods were capable of producing the best
class separation scores, using less time than the other methods. We
also ran a human judgment study similar to the one by Sedlmair
et al. [1]. The results of this study confirmed the capability of our
methods to produce results that better align with the perceptual
judgments of humans.

We furthermore presented two extensions of our methods.
First, we showed how they can support the exploration of class-
imbalanced data by normalizing dDSC and dKNNG according
to the number of points belonging to each class. Second, we
illustrated how they can be used to explore unlabeled data as
high-dimensional data might not necessarily come with labels.

In summary, the main contributions of this paper include:
• We propose a perception-driven linear dimensionality re-

duction approach, which is based on (i) extending state-of-
the-art visual separation measures, (ii) formulating them

into a DR pipeline, and (iii) devising a customized sim-
ulated annealing optimization to rapidly generate the DR
projection (Section 4).

• We evaluate the resulting DR methods, PDD and PDK, by
comparing them to six state-of-the-art DR methods on 93
datasets (Section 5).

• We present two extensions that show how our methods can
be used to explore class-imbalanced and unlabeled data
(Section 6).

The rest of the paper is organized as follows. We summarize
related work in Section 2, before we briefly introduce formal def-
initions on linear DR and visual separation measures in Section 3.
In Section 4, we present our perception-driven DR approaches,
including density-aware visual separation measures and our DR-
involved optimization via simulated annealing. We evaluate our
approaches in Section 5 and describe two extensions in Section 6,
followed by conclusion and limitations in Section 7.

2 RELATED WORK

Existing related work can be divided into two categories: visual
class separation measures and dimensionality reduction tech-
niques.

2.1 Visual Class Separation Measures
Since the projection pursuit indices proposed by Friedman and
Tukey [17], many visual quality measures have been developed
for different purposes in visualization. Bertini et al. [18] conducted
a systematic analysis of various quality measures and found that
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it is necessary to consider models of human perception in the
visualization design. This work follows the same principle, where
we aim to model the human perception of class separability into
supervised DR methods.

In terms of class separability, Sedlmair et al. [19] presented a
taxonomy of factors that influence the human perception of visual
class separation. By combining different factors together, many
class separation measures have been proposed. The Class Density
and Histogram Density measures [20], for instance, are both based
on class density, while the Distribution Consistency [10] looks at
the class labels of the nearest data points. Rather than considering
the local structure, the afore-mentioned Distance Consistency
(DSC) [10] computes the separation degree of each point by
comparing its own class center to the nearest class center. Aupetit
and Sedlmair [11] unified all these measures into a framework
by factorizing them into two components: neighborhood graphs
and class purity functions. For example, the graph of DSC is
created by connecting each data point with its own class center
and the nearest class center (see Figure 2(a)), and its class purity
function is a binary comparison of the distances to the two centers.
Under this framework, Aupetit and Sedlmair proposed 2002 new
measures [11] by defining 143 different graphs and 14 different
class purity functions.

Besides them, the machine learning community also proposed
several different measures. Classical examples include Dunn’s
index [21], LDA’s objective [7], and the Silhouette Index [22].
Their main difference is between- and within-class distances [14]
defined on different graphs. The first two measures construct the
neighborhood graph by connecting all pairwise nodes in the same
class, while the last measure considers also the pairwise distances
between all the nodes, which is a complete graph.

To learn how these measures model human perception, Sedl-
mair and Aupetit [9] proposed a machine learning framework to
evaluate all the measures and found that DSC is the best one.
Recently, they further evaluated their proposed new measures [11]
and found that their proposed 0.35-Observable Neighbors of each
point of the target class (GONG) performs the best, much better
as compared to DSC. Meanwhile, they found the average Class-
Proportion of the 2-Nearest-Neighbors of each point in the target
class (KNNG) also performs much better than DSC, while having
lower computational cost compared to GONG. In this work, we
further extend KNNG and DSC with the ability to capture density
information, so they can be properly used in an iterative DR
process (see Section 4.1).

2.2 Dimensionality Reduction Techniques

Dimensionality reduction (DR) methods can be categorized into
linear and non-linear methods. Linear DR methods project the
data to a lower dimensional space by a linear transformation. The
benefit of this approach is that it is relatively easy to interpret and
understand, and fast to compute. A variety of linear methods [2]
have been developed to preserve different data features of interest.
Among them, PCA and LDA are two very popular methods due to
their simplicity and computational efficiency. PCA maximizes the
data variance captured by the low-dimensional projection, while
LDA maximizes the separation of classes in the labeled data.
The latter resembles our goal. To combine their advantages, Choo
et al. [23], [24] proposed a two-stage framework for visualizing
labeled data, where LDA is first used to obtain a cluster-preserved
low-dimensional data, and PCA is then applied to further reduce
the dimension to two for visualization. Many other linear methods

exist: Locality Preserving Projection (LPP) [25], for instance,
aims to preserve the neighborhood structure of the data; or,
Neighborhood Components Analysis (NCA) [15], which has the
same goal as LDA and out methods, that is, separating labeled
classes. As opposed to LDA, NCA makes no assumptions on the
shape of the class distributions though and thus overcomes some
intrinsic shortcomings of LDA, which assumes that the classes
follow the Gaussian distributions. Our methods PDD and PDK fall
into the same category: linear, supervised DR methods that make
no assumptions on the class shapes. However, we go beyond the
state-of-the-art by modeling the human perception into the DR
process to optimize the visualization efficiency.

While linear methods are computationally efficient and rela-
tively easy to understand, they might miss non-linear structures
in the data. Multi-dimensional scaling (MDS) is a widely-used
DR method that can be used in a non-linear fashion. It attempts
to preserve the dissimilarities between high-dimensional data
points in the low-dimensional space. Since it involves an O(n2)
optimization, many methods have been proposed [26] to accelerate
its computation. The Kernel Discriminant Analysis (KDA) [8]
is a non-linear variant of LDA that seeks to separate labeled
classes by using kernel functions. However, it is computationally
very expensive and may not always capture complicated class
structures.

Other methods seek to better preserve local neighborhood
structures, and to uncover the intrinsic structure in the data by
building a model of manifold connectivity. Examples include
Isomap [27], Locally Linear Embedding [28], Laplacian Eigen-
maps [29], and many other variants. Unfortunately, these methods
are computationally very intensive and heavily rely on the con-
structed neighborhood graph. By transforming distances between
data points to probabilities, t-SNE [16] produces visualizations
with well-separated classes of high-dimensional data. Like t-SNE,
our metric also generalizes the simple binary separation degree
into continuous measures, but our new measures achieve better
results with less computation, as shown in Section 5.

The above methods are based on measures defined in the
data space. Human perception is not considered as a first class
citizen in their formulations. To investigate which projections are
preferred by humans, Lewis et al. [30] conducted a user study and
found that experts are reasonably consistent in their preferences,
while novices generally seem not to have shared preferences on
projections. Sedlmair et al. [1] and Etemadpour et al. [31] both
investigated the effects of user tasks and data characteristics on the
DR process, such as visual class separability. Aligned with their
observations, interesting low-dimensional projections can also be
found by using visual quality measures. Projection pursuit [17]
identifies interesting projections by scoring each projection with
the projection pursuit indices and presenting the top-ranked re-
sults to user. Anand et al. [12] extended this method to high-
dimensional space by using binning and random projections. Both
methods focus on unlabeled data and thus cannot ensure that
the classes are visually well-separated under the projections they
found. As an alternative, state-of-the-art separation measures, such
as DSC and KNNG, could be used in these frameworks. However,
such random projection cannot guarantee the identification of
DR results with maximal class separation. Instead, we formulate
an optimization problem that makes use of the class separation
measure to guide the DR process, where we seek the projection
that leads to the maximal visual separation through our customized
simulated annealing algorithm.
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3 PRELIMINARIES: FORMAL DEFINITIONS

In this section, we provide formal definitions of the components
used in the design and evaluation of our approach. We first for-
mally introduce the approach of linear dimensionality reduction.
We then describe three state-of-the-art visual separation measures:
DSC, GONG, and KNNG.

3.1 Linear Dimensionality Reduction

Given n d-dimensional data points X = {x1, · · · ,xn} ∈ Rd×n,
linear DR methods aim to optimize an objective function f (X) to
produce a linear transformation P = {p1, · · · ,pd} ∈ Rl×d , which
is a projection, to map xi in d dimensions to yi in l (lower)
dimensions: yi = P xi. We denote the set of resulting points as
Y = {y1, · · · ,yn} ∈ Rl×n.

To capture different data features of interest, many different
objectives f (X) have been designed, e.g., PCA attempts to find P
that minimizes the reconstruction error of the projected data:

f (X) = || X − PT PX ||2F , (1)

where F denotes the Frobenius norm.
Suppose X is partitioned into C classes; each xi is assigned a

label l(xi), and the c-th class (with nc data points) is {xc
1, · · · ,xc

nc},
c ∈ {1, · · · ,C}. LDA aims to maximize the class separation in
(C−1)-dimensional subspace by the following objective:

max tr
PT SbP
PT SwP

, (2)

where Sb and Sw are the between- and within-cluster scatter, resp.:

Sb =
C

∑
c=1

nc(µc−µ)(µc−µ)T and Sw =
C

∑
c=1

nc

∑
i
(xc

i −µc)(xc
i −µc)

T ,

(3)
where µc = ∑xc

i /nc is the mean (centroid of data points) of the
c-th class and µ is the mean (centroid) of the entire dataset X.

3.2 State-of-the-art Visual Separation Measures

DSC [10] is a visual separation measure found to outperform a
number of common measures [9], such as Dunn’s Index [21],
Distribution Consistency [10], and Class Density Measure [20].
The key idea of DSC is to compute the separation degree s(yi)
of each point yi by comparing the within-class distance a(yi)
and between-class distances b(yi) in the 2D visual space after
projection by P:

a(yi) = dist(yi,µ
′
c), (4)

b(yi) = min
j∈{1,··· ,C}, j 6=c

dist(yi,µ
′
j), (5)

s(yi) = δ (a(yi)> b(yi)), (6)

where µ ′j = Pµ j, a(yi) is the distance from yi to its own class
center (i.e., µ ′c), b(yi) is the distance from yi to another class center
(which is the nearest), and δ (·) is an indicator function: if a(yi)>
b(yi), s(yi) is one, else zero. Hence, each point (yi) connects to two
class centers according to Eqs. 4 and 5, and all these connections
together form the nearest neighborhood graph, see Figure 2(a)
for an example. The final DSC value is the average of all s(yi),
which in fact indicates the average classification error after the
projection. Since the time complexity to find the nearest center for
b(yi) is O(logC), the overall time complexity to compute DSC is
O(n logC).

Fig. 2. We illustrate the construction of nearest neighbor graphs in a
two-class data for (a) DSC, (b) GONG, and (c) KNNG by taking one of
the data points (circled in red) as an example. The black arrows in the
illustrations show how the data point connects with its neighbors in each
nearest neighbor graph; however, the three measures define neighbors
differently. For DSC, neighbors are class centers (see Eqs. 4 & 5), see
the two yellow dots in (a). For GONG and KNNG, neighbors are nearby
data points; the small green dots in (b) are the intermediary points in-
between the data point and its neighbors.

GONG 0.35 DIR CPT (abbrev. as GONG). Aupetit and Sedl-
mair [11] proposed this measure and found it to be the best state-
of-the-art measure: 11.7% better than DSC in terms of AUC, i.e.,
Area Under the Receiver Operating Characteristic curve. GONG
is built upon the γ-observable neighbor graph: for each point yi,
connect it to point y j if the intermediary point in-between them
(computed by γy j +(1− γ)yi with γ = 0.35) is closer to y j than
any point in Y\{yi}. In the example shown in Figure 2(b), three
of the five intermediary points (the small green dots) satisfy this
condition (see the black arrows), so their corresponding y j’s form
a set denoted as Ω(yi), with which we can compute the separation
degree of yi:

s(yi) =
1

|Ω(yi)| ∑
y j∈Ω(yi)

δ (l(yi), l(y j)) , (7)

where δ (l(yi), l(y j)) is one if yi and y j have the same class label,
else zero. For the example in Figure 2(b), |Ω(yi)|= 3 and s(yi) is
2/3. The final GONG value is the average separation degree over
all data points of the same class rather than over the entire dataset.
Since finding Ω(yi) for a data point requires us to test its nearby
data points in Y\{yi}, the overall time complexity is O(n2 logn),
which would be too high for DR-involved optimization.

KNNG 2 DIR CPT (abbrev. as KNNG) also uses Eq. 7 to
compute the separation degree of each point in the dataset, but
it simply takes the two nearest data points of yi as Ω(yi), so s(yi)
is always 0, 0.5, or 1. Hence, although the AUC score for KNNG
is empirically slightly less than that of GONG, creating a 2-nearest
neighborhood graph only costs O(2n log(n)), so its computation is
far less expensive than creating the γ-observable neighbor graph
for GONG. In the example shown in Figure 2(c), the separation
degree of the point in red circle is 0.5.

4 PERCEPTION-DRIVEN DR
The visual separation measures described above provide the foun-
dation for evaluating the perceptual quality of 2D projections.
In this work, one of our goals is to reformulate a linear DR
optimization with such measures, so that we can seek a perception-
driven DR projection that maximizes the visual class separation.

To achieve this goal, we first derive an energy function that
maximizes the separation degree with importance parameters wi:

E(P) = argmax
P

1
n

n

∑
i=1

wi s(yi), (8)
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Fig. 3. The deficiency of DSC in characterizing the separation degree
of points in two different scatterplots. The DSC values of the plots are
similar, but our dDSC measure can catch their difference.

where P is a 2×d projection matrix, and wi is a user-defined
parameter for each data point with one as its default value.

Finding the global optimum for Eq. 8 is nontrivial because
the objective function is non-linear and non-analytical. Moreover,
gradient-descent-based optimization algorithms might deliver in-
ferior results, since the indicator functions incorporated in Eqs. 6
and 7 are non-differentiable [32].

Even if we may solve the optimization using some complex
algorithms such as genetic algorithms [33], directly using the state-
of-the-art class separation measures might not generate desirable
results due to their inherent drawbacks. First, current measures
have not yet considered the class density distribution, which
could affect the class structure [14] and impact the DR results.
Second, evaluations of existing measures have been conducted
only on scatter plots with binary classes [11]. It is not clear how
well they work for multi-class scatter plots. Last, GONG has a
very high computation cost in O(n2 log(n)), which hampers the
visual analysis process in many scenarios, e.g., interactive high-
dimensional data exploration.

Due to the drawbacks mentioned above, DR methods directly
driven by DSC or KNNG may not guarantee desirable results,
as illustrated in Figures 1(e,f): the blue, yellow, and red classes
are not well-separated. To overcome these issues, we propose
two techniques: density-aware separation measures for multi-
class data (Section 4.1) and a customized simulated annealing
algorithm (Section 4.2). The density-aware formulations of DSC
and KNNG are referred to as dDSC and dKNNG, respectively,
and their corresponding perception-driven DR methods are pDR-
dDSC and pDR-dKNNG (abbrev. as PDD and PDK).

4.1 Density-aware Visual Separation
4.1.1 Density-aware DSC
To overcome the deficiency of DSC in characterizing class density
and distribution, we formulate density-aware DSC (dDSC), which
defines the separation degree as the difference between within-
class and between-class distances normalized by their maximum:

s(yi) =
b(yi)−a(yi)

max{a(yi),b(yi)}
, (9)

where a(yi) and b(yi) are defined as in Eqs. 4 and 5, so
s(yi) ∈ [−1,1]. When s(yi) is close to 1, yi is located close to
the center of its class; when s(yi) is close to 0, yi is located
around the boundary of its class; and when s(yi) is close to
−1, yi is likely to be misclassified. Therefore, this new measure
can take into account the class density and distribution, and
provide a continuous separation degree. If data points are mostly
concentrated around the associated class centers, the dDSC value
is high; otherwise, it is lower. Figure 3 shows an example that
illustrates the capability of dDSC over DSC and shows that it is

Fig. 4. The deficiency of KNNG in characterizing the separation degree.
Here, we look into the class boundaries in Figure 3 (see the red ellipses),
and take as examples the four points circled in red above. (a) the KNNG
values of the two points are the same, while our dKNNG can catch their
difference, and (b) when a point and its neighbors have the same label,
our dKNNG can behave consistently.

much more sensitive for different degrees of visual separability.
The time complexity of computing dDSC is the same as DSC;
both are O(Cn), where C is the number of classes. This is very
efficient and hence good for our purpose of using it in an iterative
DR pipeline.

4.1.2 Density-aware KNNG
Since KNNG only considers the class labels of two nearest points
(see Section 3.2), for points near the class boundaries, their
separation degrees are always 0.5 if one of their nearest points
has the same label while the other one is different. This is true
no matter how close or far the point is from the nearest point
of the same label. Such points are often located near the class
boundaries, where the labeling may not be reliable; see Figure 4(a)
for examples.

To better characterize the separation degree, we propose
density-aware KNNG (dKNNG). Given y j and yk as the two
nearest neighbors of yi, there are three cases in computing the
separation degree of yi (i.e., s(yi)) by comparing labels l(y j) and
l(yk) against l(yi):

• If both labels l(y j) and l(yk) equal l(yi), set s(yi) as 1.
• If both labels l(y j) and l(yk) differ from l(yi), set s(yi) as

-1.
• Without loss of generality, we consider l(yi)=l(y j) and

l(yi)6=l(yk). Then, we can compute a(yi) = dist(yi,y j)
(same label) and b(yi) = dist(yi,yk) (different label), and
compute s(yi) using Eq. 9.

Hence, s(yi) ∈ [−1,1], which is consistent with dDSC, and the
time complexity of computing dKNNG is the same as KNNG;
both are O(2n logn).

4.1.3 Discussion
By incorporating distances into the class separation measures, both
dDSC and dKNNG can better characterize the class density and
distribution. However, they have slightly different characteristics:
dDSC describes how dense the points around the class center
are, such that we can effectively differentiate the two plots in
Figures 3 (a,b) with different dDSC values. In contrast, dKNNG
describes how dense the points with the same label are. Since
the points around the class center often have the same label (see
Figure 4(b)), dKNNG focuses on the characterization of boundary
points as shown in Figure 4(a). Since both class densities and
class boundaries play important roles in determining the class
structures [14], both dDSC and dKNNG can be used to guide
the iterative DR procedure in the optimization, depending on the
data separation pattern (see Section 5).

To explore whether our new measures are in accordance
with human perception, we employ the evaluation framework
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proposed by Sedlmair and Aupetit [9]. This framework is based
on predicting human judgements on 828 scatterplots using the
AUC (area-under-the-curve) to score the measures: 50% indicates
a random guess, while 100% indicates a perfect prediction of
human judgements. The AUC scores of dDSC and DSC are 83.1%
and 83.2%, respectively, while the scores of both dKNNG and
KNNG are 92.1%. This suggests that our new measures dDSC
and dKNNG are comparable to DSC and KNNG in terms of
reflecting human perception. This result is not surprising as the
framework [9] involves only clearly separable classes and clearly
non-separable classes. While we want to ensure that our new
measures are equally good in these clear-cut cases, our primary
goal is to address cases that may not be that clear. This is crucial
for the DR-involved optimization, where the class structures are
unknown in the early iterations as shown in Figure 7.

4.2 Optimization by Simulated Annealing
Simulated Annealing (SA) [13] is a stochastic optimization
method inspired by the annealing process in metallurgy. In general,
it solves an optimization problem by beginning with a high “tem-
perature”, gradually lowering the temperature with the Metropolis
criterion [34] until a good solution is found. The “temperature”
can be thought of as the probability of accepting intermediate
results that are worse than the current iteration. The lower the
temperature the lower the probability that worse results will be
accepted. Despite the many local optimums, the global optimum
is very likely to be found as long as the temperature cooling speed
is sufficiently slow.

To optimize the non-linear objective function presented in
Eq. 8, we customize a Simulated Annealing (SA) method [13]
as outlined in Algorithm 1. It has two key components: i) ini-
tialization of P; and ii) selection of neighbor solution Q from P.
Note that we follow the suggestion from Kirkpatrick et al. [35]
and set the cooling coefficient α to be 0.95 in all our experiments.
In addition, we set the initial T as 100×d, where d is the number
of dimensions in the input data.

Initialization of P (line 1). For most data, we find that using
random initialization can quickly produce reasonable results. Al-
ternatively, one can use any existing DR algorithm as an ini-
tialization. When comparing the SA-optimized results generated
using random initialization, PCA, LDA, and LPP, respectively,
to initialize P, however, we found that the results are almost the
same. As random initialization sometimes generated slightly better
results, we opted for random initialization as the default option in
our methods.

Choosing a neighbor solution Q near P (line 4). By linearizing
P as a vector {p1, p2, · · · , p2×d}, we may produce Q by adding a

Algorithm 1 Optimal Projection Matrix Approximation
1: set an initial solution P
2: set an initial temperature T
3: while T 6= 0 do
4: randomly choose Q in the neighborhood of P
5: ∆E = E(Q)−E(P)
6: if ∆E > 0 then
7: P = Q
8: else if prob(exp(∆E/T ))> random(0,1) then
9: P = Q

10: end if
11: reduce temperature by T = αT
12: end while

Fig. 5. These four results (a-d) are produced using different values of ε:
0.1, 0.5, 0.8, and 1.0. Their final energies E(P) are 0.80, 0.89, 0.75 and
0.11, respectively, while the running time are 9.94s, 2.40s, 0.81s and
0.04s, respectively.

Fig. 6. The plots on E(P) versus the number of iterations showing the
convergence of the two proposed methods. PDD gradually reaches
convergence, while PDK quickly reaches a reasonable solution but then
has a slow rise with oscillations. Note that as the objectives of these
methods are different, the difference in convergence is reasonable.

small random offset to each pi in P. This is a simple and fast
approach to generate a random Q, but we found that it does
not necessarily achieve high-quality results with a fixed cooling
coefficient α .

To rapidly produce better solutions, we pick some pi with
random probabilities and search for a local optimum. Specifically,
we replace pi with pi ∗(1−∆r) or pi ∗(1+∆r), and assign the one
that can lead to a larger improvement of E(P) to the corresponding
element in Q. To guarantee that the local optimum is close to P,
we set ∆r to 0.05. Regarding the unselected variables, their new
values are still generated by adding a random (positive or negative)
offset with the magnitude 0.01.

The selection of which pi to modify is determined by a random
process, where we draw a random value uniformly in [0,1] and
check if it is greater than threshold ε . If ε is small, many local
optima need to be computed while the final solution is not good
enough due to insufficient randomness (see Figure 5(a)), but if ε

is too large, the solution is not good if the number of iterations is
not sufficient. Note that when ε = 1, it is equivalent to generating
fully randomized neighborhoods (all pi); see Figure 5(d). Thus,
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Fig. 7. Illustration of convergence, where the top and bottom rows show the results of PDD and PDK, respectively. (a) results of the random
initializations; (b) results after 30 iterations; (c) results after 50 iterations; (d) results after 70 iterations; and (e) final results.

finding a proper ε is very important to the final result. To do so,
we empirically tested the value of ε over the 93 datasets and found
that a choice of 0.5 works well for most data.

Time Complexity. In the worst case (ε = 0), where we need
to compute the local optimum for every dimension, the number
of times that we need to evaluate the objective function is 4dm,
where m is the total number of iterations in the SA process. For a
dataset with C classes, the time complexities of computing dDSC
and dKNNG are O(Cn) and O(2n log(n)), respectively. Hence,
the time complexities of PDD and PDK (abbrev. of perception-
driven DR methods with dDSC and dKNNG) are O(4Cdnm) and
O(8dn log(n)m), respectively.

Since C << n, we can simplify the time complexities of PDD
and PDK as O(dmn) and O(dmn log(n)), respectively. In our
experiments, we found that 100 iterations are enough for most
data, namely m≤ 100. This indicates that our methods (especially
PDD) have advantages in computation cost even when compared
with linear methods, like PCA and LDA (see Section 5 for details).

Figure 6 shows the convergence curves, where we can see
that PDD gradually converges, while PDK quickly arrives at a
reasonable solution but then slowly oscillates until it converges.
This difference is not surprising as the objective function of
dDSC is smoother than that of dKNNG. Figure 7 illustrates these
difference by showing and comparing the intermediate results
generated by these two methods.

5 COMPARATIVE EVALUATION

We implemented our methods in C++ and tested them on a PC
with an Intel Core i5-4590 3.3GHz CPU and 8GB memory. To
confirm that our algorithms (PDD and PDK) can present the class
structures of labeled high-dimensional data with maximal visual
class separation, we compared their projection quality with six
widely-used DR methods by performing two comparisons: (i)
with numerical measures (Section 5.1) and (ii) based on human
judgements (Section 5.2).

Existing DR methods. The comparison includes six existing
DR methods: PCA, t-SNE [16], LDA, KDA [8], neighborhood
components analysis (NCA) [15], and the random projection
method (RAND) [12]. We use GONG (see Section 3.2) as the

score function in RAND method to choose the projection with
the maximal class separation. Since GONG takes the class labels
into account, we take RAND as a supervised method. PCA and
t-SNE are the only unsupervised methods in this set, that is, DR
methods that do not directly take class labels into account. While
this introduces a natural bias towards the supervised methods,
we still deem a comparison interesting and relevant. PCA is
a very well-known method and has been used widely in the
visualization community. t-SNE—although not taking class labels
into account—has been shown to still perform good on visual
class separability tasks, specifically for high-dimensional class
structures that live on clear, yet non-linear manifolds [1].

We also include the methods of perceptual-driven DR with the
original DSC measrue (PD) and KNNG measure (PK). Together
with our methods, we can categorize the resulting ten methods in
two ways:

1) Two unsupervised methods (PCA, t-SNE), and eight
supervised methods (LDA, KDA, NCA, RAND, PD, PK,
PDD, PDK), and

2) Eight linear methods (PCA, LDA, NCA, RAND, PD, PK,
PDD, PDK) and two non-linear methods (KDA, t-SNE).

We use the public C++ libraries [36], [37] to perform LDA
and t-SNE, while the remaining methods are taken from the
Matlab DR toolbox [16].

Datasets. For a comprehensive evaluation, we collected 93
labeled high-dimensional data of a wide variety of size, dimen-
sionality, and number of classes. Among them, 71 datasets come
from the 75 high-dimensional datasets used by Sedlmair et al. [19].
We removed the four synthetic grid datasets because of their
high degree of artificialness, as well as the lack of separation
patterns. We kept all the datasets from the other categories: real;
gaussian, with synthetic gaussian blobs of classes; and entangled,
datasets containing carefully crafted classes that are non-linearly
interleaved in the high-dimensional space. Since DSC and KNNG
were both already evaluated with these datasets [11], using them
alone might lead to potential over-fitting issues. We thus gathered
22 additional real datasets from the UCI repository [38]. We
opted for additional real datasets to further increase the ecological
validity of our evaluation. Table 1 gives an overview over our
final collection of 93 datasets and how they break down into the
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three categories real, gaussian, and entangled. These datasets have
substantial variations in terms of data size, ranging from 24 to
43500, and data dimensionality, from 3 to 295. By applying the
ten DR methods to these 93 datasets, we receive 930 projections,
in other words, 930 color-coded 2D scatterplots.

TABLE 1
Datasets used in our comparative evaluation.

Dataset Category #sets #points #dim. #classes
REAL 53 24 – 43500 3 – 295 2 – 28

SYNTHETIC-GAUSSIANS 16 100 – 500 5 – 10 3 – 5
SYNTHETIC-ENTANGLED 24 185 – 2318 3 – 15 3 – 15

5.1 Comparison with Numerical Measures
We first compare the projections resulted from the ten chosen DR
methods by using existing quality measures.

Measures. We chose two measures for this numerical
comparison: GONG and silhouette coefficient (SC) [22]. As
discussed in Section 3, GONG is the best class separation
measure found by Aupetit and Sedlmair [11]. To apply it to
multi-class data, we compute the final GONG value by averaging
the separation degree over all data classes. Its value is still in the
range [0,1] and the larger values indicate large class separation. In
contrast to GONG, SC not only measures the class separation but
also takes the cohesion between points into account. Similar to
our dDSC, the SC value is in the range [-1,1], where zero means
the point is located at the class boundary and a positive value
near 1 indicates better cohesion and separability. Note that we do
not use the best-known stress measure of MDS [39], because it
has been shown unsuitable to assess the class separation [40]. We
also do not use dDSC and dKNNG (or DSC and KNNG), as they
are used in the design of our methods and hence might bias the
study. For the curious reader, however, we provide this additional
analysis in the supplemental material.

Results. All individual GONG and SC values generated by the ten
different DR methods for each dataset, as well as screenshots of
all the projections along with their GONG and SC values can be
found in the supplemental material. To facilitate the comparison
between different DR methods, we here summarize the GONG
and SC scores over all 93 datasets. The results are shown in the
blue boxplot in Figure 8. The ten methods are ordered as follows
(from left to right): First PD, PK and our two methods (PDK
and PDD), then supervised methods (LDA, KDA and NCA), and
finally unsupervised methods (RAND, PCA and t-SNE). Since
LDA is the closest to PDD, we put it right next to PDD, while t-
SNE, as the only non-linear method, is arranged in the last column.

Figure 8(a) shows that PDK has slightly better GONG scores
than PDD, while PDD performs better than the rest of the methods.
In contrast, PDD has larger SC scores than PDK, as shown in
Figure 8(b). Furthermore, PD performs similarly to PDK and LDA
works better than PDK (but not PDD) in this case. We believe the
reason is that dKNNG might not characterize the class density
well by modeling only the density of the boundary points. Note
that the GONG and SC scores of NCA and KDA both have large
variances. This is expected, because both methods impose class
assumptions that might not be valid for some of the datasets.

The red boxplots in Figure 8 focus on the distributions of
GONG and SC scores over the 53 real datasets. We deem this
differentiation important due to the applicability of our results to

PDPK PDK PDD LDA KDA NCA RAND PCA t-SNE

PDPK PDK PDD LDA KDA NCA RAND PCA t-SNE

Fig. 8. These boxplots summarize the values of GONG (a) and SC (b) for
the ten different DR methods, where the blue boxplots show the score
distributions over all 93 datasets and red boxplots describe the score of
the 53 real datasets only .

real world scenarios (ecological validity), as well as the potential
bias introduced through the highly artificial entangled datasets.
By comparing these (red) boxplots with the blue boxplots in
Figure 8, we can see that six of the supervised DR methods (PK,
PD, PDK, PDD, LDA, and NCA) behave better on real data. The
remaining four methods perform worse on real data. Meanwhile,
PDD and PDK have almost the same GONG scores, while their
SC scores differ with a similar amount as in the blue boxplot for
all the data. PDD’s SC values are higher in the red boxplots than
the blue though, indicating that PDD performs better for real than
synthetic data. By ranking the methods according to the GONG
and SC scores, we found that the top four methods are: PDD,
PDK, LDA, and t-SNE, where PDD does a better job than LDA
and t-SNE, while PDK is a little worse than LDA in SC scores.

Qualitative Comparison. Next, we perform a more detailed
qualitative comparison on the top four methods we found earli-
er using two randomly-picked datasets: FORESTTYPE [41] and
STATLOG [38]. Figure 9 presents the result.

We can see from the rightmost column of Figure 9 that the
class structures generated by t-SNE are scattered or split into
several sub-classes, so their SC scores are rather small (0.21 and
0.09). PDK receives the highest SC scores with values of 0.51
(Figure 9(a)) and 0.45 (Figure 9(e)). In terms of GONG, both
PDK and PDD score well (0.91) for the STATLOG dataset. For
the FORESTTYPE dataset on top, PDK performs slightly better
than PDD by four percent (0.82 vs. 0.86). LDA (Figure 9(c,g)),
on the other hand, performs consistently poorly on both datasets;
all classes are spread in a major direction. We believe the reason
is that LDA cannot identify the second discriminative direction to
separate the classes.

5.2 Comparison with Human Judgments
On the other hand, we evaluate PDD and PDK in terms of human
perception by conducting an empirical user study to collect human
judgements. We followed the procedure in Sedlmair et al. [1], and
recruited some trained expert coders who had experience in rating
a large number of scatterplots in terms of how well the classes are
visually separated. For details on the method and the justification
of the underlying assumptions, we refer the reader to Sedlmair et
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Fig. 9. Comparing the class separation quality of PDK, PDD, LDA, and t-SNE (left to right) on FORESTTYPE dataset (top) and STATLOG (bottom)
dataset, where the resultant GONG and SC scores for each data are shown next to each subfigure.

al. [1]. We do not include the methods of PD and PK, because
their results are constantly worse than our density-based PDD and
PDK as shown in Figure 8.

Data Collection. In detail, we recruited three expert coders: two
visualization researchers who had more than five years of relevant
experience, and a master student who focused on visualization
research. Each of them separately rated 744 DR projections,
which we got from projecting and presenting the 93 datasets
with the eight DR methods (see previous subsection) as 2D
scatterplots. A color scheme designed for categorical data (see
http://colorbrewer2.org) was used to show the classes. Since some
datasets have a large number of points, some classes might become
invisible due to over-plotting, i.e., occlusion. We alleviate this
issue by randomly shuffling the drawing order of data points in
the scatterplots. Furthermore, we plot a convex hull of a class as a
guidance for judging the separability of each class, once the coder
clicks on the corresponding class name. For each class, coders rate
the separability by using a Likert scale [42], which ranges from 1
(“not separable at all”) to 5 (“nicely separable”). Figure 10 shows
the user interface used in the expert coding study. In this example,
one expert rated the ten classes (class 0 to 9) as 3, 4, 2, 5, 1, 1, 2,
4, 1, and 1, respectively.

Overall, each coder needed to judge the class separation of
4104 color-coded classes across 744 scatterplots. The display
order of the scatterplots was randomly chosen to avoid potential
ordering bias. Since the judgement process took roughly 8 hours
to complete (on average), each coder took a 15-minute break
after every hour of work to prevent from fatigue. We used
Krippendorff’s alpha (for ordinal data) to measure inter-coder
reliability [43]. For our collected ratings, Krippendorff’s alpha
is 0.816, which is larger than 0.8, so this number suggests that
the ratings from the expert coders are reliable [43]. Heatmaps of
individual class ratings can be found in the supplemental material.

Results. To investigate how PDD and PDK compare to existing
DR methods, we compute the averaged separability rating of each

Fig. 10. The user interface in the user study: (a) the visualization results
after the DR projection, and (b) the Likert scale for users to choose a
rating for each class. By clicking the class button in (b), the correspond-
ing convex hull of the class is revealed in the main visualization (a) for
users to check the class separability.

Fig. 11. The above boxplots show the averaged class-wise ratings of
each method, where the red and blue boxplots present the ratings of all
datasets and only real datasets, respectively.

method over all datasets and over only real datasets. The results
are shown as blue and red box plots, respectively, in Figure 11.

Figure 11 reveals that PDK performs quite similar to PDD,
followed by LDA and RAND, while KDA and NCA are the
worst although they work quite well for some of the datasets.
We think the reason for such idiosyncratic behaviors of KDA
and NCA lay in their non-linear kernels, which might degrade
the class separability. PCA and t-SNE are quite similar to RAND
for all the datasets, but produce smaller separability ratings for
the real data. In contrast, LDA generates better class separation

http://colorbrewer2.org
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for real data, while PDD and PDK perform well regardless of
the data category. This suggests that our methods have stronger
discrimination ability than LDA.

Comparing the human judgments with the findings from the
numerical study shown in Figure 8, we obtain two interesting
observations. First, both PDD and PDK receive larger ratings than
LDA in terms of the human judgment results shown in Figure 11,
while PDD and PDK have similar and better performance (re-
spectively) compared to LDA shown in Figure 8 (numerical).
This indicates that PDD and PDK have more advantages in
producing results that are more consistent to human perception
while being comparable to LDA in terms of GONG and SC
scores. Second, t-SNE performs similar or better than RAND in
Figure 8 (numerical), whereas it is worse than RAND in Figure 11
(human). This reveals that GONG might not be accurate enough
to fully characterize human perception, resulting in high t-SNE
GONG scores, while the human judgments were much lower. Such
a conclusion is further confirmed if we look at the correlation
coefficients between the user ratings and the GONG and SC
scores, an evaluation approach that was used by Sips et al. [10].
Here, we see that human judgment’s correlation with GONG is
0.61, and that with SC is 0.63. This indicates that the match is
not bad, but still far from perfect, echoing the findings of previous
studies on such measures [9], [10], [11], [19].

5.3 Comparison of Performance

Regarding time performance, all linear methods can quickly finish
for most data, whereas non-linear methods are generally much
slower. Since some methods are implemented in C++ and some
taken from the Matlab DR toolbox, we only compare our method
(which is in C++) against the C++ version of LDA and t-SNE.

Results. Figure 12 presents the results using boxplots. It shows
that our PDD is usually faster than t-SNE; our method finishes
in less than 0.05 seconds even for some larger testing datasets.
PDK, on the other hand, is close to t-SNE, but much slower than
PDD. Since the time complexity of LDA is O(nd2)(d < n) or
O(d3)(d ≥ n) [44], LDA is often two or three times faster than
PDD if d < n, otherwise PDD is faster or similar to LDA. It can
be confirmed by the outliers of the boxplots corresponding to LDA
and PDD. Since PDD takes less than 0.1 seconds for most data, it
suggests that it can enable interactive visualization for most high-
dimensional datasets.

Fig. 12. The boxplot shows the log-scale computational times of the four
DR methods with C++ implementations.

6 EXTENSIONS

Besides visualizing the general labeled high-dimensional data,
our methods can also be extended for the exploration of class-
imbalanced data and classification of unlabeled data. Due to
the higher computational cost of PDK, we only use PDD to
demonstrate the effectiveness of these extensions.

6.1 Exploration of Class-Imbalanced Data

The class-imbalanced data is common in applications like medical
disease prediction, fraud detection and risk management, where
some classes have many samples, and others a few [45]. Such data
is often characterized by the imbalance ratio (IR), the ratio of the
number of samples in the majority class to the number of samples
in the minority class. If we directly apply DR methods to them,
the separation will bias towards the classes with more samples,
because Eq. 8 assigns the same importance value to each sample.
To alleviate this issue, we allow the user to normalize s(yi) by nc,
where the c-th class, which includes point yi, has nc points. We
call this method the weighted PDD.

We tested PDD with a six-class Dermatology dataset, which
consists of 358 records in 34 dim. with an IR value of 5.59.
Figure 13(a,b) show the results generated by PDD and weighted
PDD, respectively. Their GONG and SC values are 0.97 vs. 0.98
and 0.79 vs. 0.83, respectively, showing that the class separations
have been slightly enlarged in the weighted PDD. Inspecting
Figure 13(b) reveals that the minority class in red has been more
clearly separated from the others. In contrast, the separations
among the green, cyan, yellow and blue classes are slightly
weakened and these classes become more compact (except the
blue one). The dark blue class remains clearly separated from the
others, but its distribution becomes skewed. Investigating which
data attributes result in such changes is part of our future work.

Fig. 13. The visualizations of the Dermatology dataset generated by
unweighed PDD (a) and weighted PDD (b), respectively.

6.2 Classification of Unlabeled Data

Not all high-dimensional data necessarily comes with class labels.
A user, however, might still be interested in learning how the data
breaks down into groups of similar items. To do so, a user might
first apply a set of clustering algorithms and evaluate which one
separates the classes using DR to project and visualize the data [3].
This approach is inherently supported by our methods.

In other cases, however, automatic clustering might not lead
to meaningful results, and a user would like to incorporate their
prior knowledge by different means. To support this process, we
allow the user to manually label certain data items based on
their previous knowledge. The DR embedding is then iteratively
updated whenever new labels come in. This scenario has been
characterized by Sacha et al. [46], and resembles a typical ap-
proach in active learning of classification models.

Our methods can then take such partially labeled data as its
input and create a lower-dimensional embedding of all the data
points. This approach is similar to the idea of semantic interaction
proposed by Endert et al. [47], in which users can move points in
the lower-dimensional embedding and the changed distances are
used to update the DR process.
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More specifically, using PDD as an example, the following
steps are iteratively pursued until the user reaches a desired result:

1) randomly sample a small subset of items and present it to
the user for labeling;

2) apply PDD to the labeled samples;
3) classify the remaining unlabeled data using the projection

matrix obtained from PDD; and
4) project all data points to the low-dimensional embedding

and show the classification result to the user.

The classification is achieved with a nearest neighbour classifi-
er [48], which seeks the nearest class center µ ′j for each point and
takes j as the label. This is similar to the classification performed
by LDA, which takes the same procedure in the low-dimensional
embedding for the data points [7].

To see the effectiveness of this pipeline, we apply it to
the 58-dimensional SPAMBASE dataset, which consists of 4601
emails with known labels. Having this ground truth data on the
labels allows us to assess the PDD classification accuracy (step
3) by simply computing the percentage of correctly classified
points. Figure 14 presents the progressive procedure, where 50,
100 and 200 labeled samples are gradually added for training
within three iterations. To clearly see which samples are selected,
we overlay them on their t-SNE embedding as colored points
(see Figure 14(a,b,c)). Figure 14(d,e,f) presents the classifica-
tion results by applying PDD to the selected samples shown in
Figure 14(a,b,c), where the mis-classified points are highlighted
with red borders and the classification accuracies are 0.69, 0.79
and 0.91, respectively. We can see that the accuracy gradually
improves as the number of labeled samples increases. We believe
that the accuracy can still be improved if we use advanced active
learning algorithms [49] to select samples instead of random
selection.

For comparison, we also apply LDA to classify the whole data
based on the selected labeled samples and obtain the results as
shown in Figure 14(g,h,i), where the accuracy is 0.59, 0.60 and
0.62, respectively. To avoid randomness, we run the PDD- and
LDA-based progressive labeling multiple times. As the results are
always similar, we can see that our PDD is also superior to LDA
for interactive visual classification.

7 DISCUSSION AND FUTURE WORK

This paper presents a perception-driven linear DR approach, a
novel dimensionality reduction technique for visualizing labeled
high-dimensional data. The goal of our approach is to provide user
with projections that optimize the visual separability of classes.
We quantitatively and qualitatively compare our approach with
different state-of-art DR methods, showing that our methods PDD
and PDK outperform them with similar or better results in most
cases. Lastly, we demonstrate the usefulness of our method PDD
in exploring imbalanced data and unlabeled data.

Our approach still has certain limitations, which we would
like to address in the future. Although PDD outperforms the other
methods for most data, for some datasets it results in inter-class
distances that are smaller than those of PDK. To alleviate this
issue, one possible direction would be to reformulate the dDSC
by putting more emphasis on inter-class distance than intra-class
distance. Second, PDK produces similar or slightly better results
than PDD but its computational cost is more expensive due to
the construction of nearest neighborhood graph. We have tried
to bypass this burden by assuming that each point is connected

Fig. 14. The classification and visualization of the Spambase dataset.
(a,b,c) The results generated by t-SNE with randomly selected 50, 100,
and 200 labeled points; (d,e,f) the results of PDD classification with
accuracies of 0.69, 0.79, and 0.91 for (a,b,c), respectively; (g,h,i) the
results of LDA classification with accuracies of 0.59, 0.60 and 0.62 for
(a,b,c), respectively. The mis-classified points in (d,e,f,g,h,i) are high-
lighted with red borders.

to all remaining data points. Yet, directly applying dKNNG to
such a fully-connected graph between all points does not well
characterize the separation degree. Although both methods are
derived from perceptual separation measures, they can be easily
extended for classification tasks. We would like to investigate
their performances in high-dimensional data classification. Last,
we plan to investigate the possibility of semi-supervised methods
for interactive classification of unlabeled data, where the class
structures revealed by labeled data and inherent clusters within
the data are consistently integrated together.
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