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Abstract A persons manner of walking, or their gait are
important features in human recognition and classification
tasks. Gait serves as an unobtrusive biometric modality which
yields high quality results. In comparison with other bio-
metric modalities, its main strength is its performance even
in data that is captured at distance or at low resolution. In
this paper we present an algorithm for classification of gait
disorders arising from neuro-degenerative diseases such as
Parkinson and Hemiplegia. We focus on motion anomalies
such as tremor, partial paralysis, gestural rigidity and pos-
tural instability. The analysis and classification of such mo-
tions is challenging since they consist a multiplicity of sub-
tle formations while lacking a regular pattern or major cycle.
We introduce a gait representation which is invariant to the
walking cycle and yields an efficient similarity metric. Our
method performs on the joints’ motion trajectories of a 3D
human skeleton captured by a Kinect sensor. The algorithm
is robust in that it does not require calibration, synchroniza-
tion or a careful capturing setup. We demonstrate its effi-
ciency by classifying different degenerative cases with high
accuracy even in presence of noise and low resolution ac-
quisition.
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Fig. 1 Hand tremors and gait anomalies in a Parkinson patient. Ex-
tracted skeleton from Kinect show the different hand pose geometries
(left column).

1 Introduction

Human gait serves as an important biometric feature for rec-
ognizing people based on their individual walking styles.
Unlike other biometric features such as iris or fingerprints,
gait does not require high resolution capturing or special
equipment. Its main strength is its performance even in data
that is captured at low resolution or that is noisy and partial.
A seminal early work in this area was carried out by psy-
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chologists in 1971, when Johansson attached light points to
the joints of people bodies in a dark room. The results sug-
gested that people can recognize each other merely by walk-
ing styles [16]. Suggested computational tools for gait anal-
ysis, try to mimic these capabilities of humans to recognize
people based on their walking style even at a long distance.

Our work follows this path, taking a step further and
exploring gait deficiencies and disturbances. Such distur-
bances, generally denoted gait anomalies, are motion pat-
terns which are typically very complex. They may include
phenomena such as tremor, partial paralysis, gestural rigid-
ity, postural instability and etc. These motions are challeng-
ing as they are typically non-periodic, lacking a regular syn-
chronized repetitive pattern and without a clearly defined
start and end points. Furthermore, their patterns are erratic
and may consist complex configurations as several phenom-
ena interfere with each other. In contrast, normal walk cycles
have a well defined repetitive pattern controlled by a simple
state machine which synchronizes and balances the motion.

Gait disorders are very common in neuro-degenerative
diseases as Parkinson and Hemiplegia. These diseases are
characterized by the loss of neurons in brain, resulting in
disfunction of circuites that mediate motor functions. As a
result, there can be a multitude of motor symptoms such
as rigidity, akinesia, bradykinesia, rest tremor, and postural
abnormalities, most of them affecting walking ability [6].
Current standard for assessment of symptoms is highly sub-
jective using clinical scales such as the ’Unified Parkinson
Disease Rating Scale (UPDRS)’ [33]. For example, in an
observation-based gait analysis by a clinician, the approxi-
mations are made based on the deviation of gait parameters
from normal gait symmetry.

In this work, we record human gait using a single Kinect
camera. Such low-cost non-intrusive depth scanners allow
capturing 3D human walking cycles at nearly video rates
within a very simple setup. In addition to a raw space-time
volume, Kinect extracts a 3D virtual skeleton of the body
which stays coherent in time [34]. These capabilities, packed
in an affordable and compact device, already led several re-
searchers to propose Kinect as appropriate means for gait
acquisition and recognition [36,11].

We introduce a novel gait representation algorithm that
is invariant to walking state and pose in front of the cam-
era. Our intuition is that the relative movements of body
parts with each other form a principal gait feature. Thus,
to efficiently represent human gait, we use the covariance
between skeletal joints combining their trajectory positions
and speed to model their relative movement. Gait classifi-
cation performs by learning a similarity distance from the
trained gait models.

Thus our paper makes the following novel contributions:

– An enhanced gait descriptor, encoding joints’ positional
and speed data in a covariance-based descriptor

– A segmentation of the motion sequence into local time-
windows which allows walk-cycle invariance thus re-
lieving the need to synchronize walking sequences.

– Learning a similarity distance from training set which
allows improving accuracy rates

We demonstrate our method using a set of recorded walk-
ing cycles originating from persons with Parkinson and Hemi-
plegia diseases as well as healthy persons. Data is typically
noisy as it is captured using a simple setup consisting of a
single Kinect1 camera. Nevertheless, results show a high
classification accuracy which supports human gait being a
powerful and efficient biometric feature.

Due to its simplicity, our system naturally lends to health
providers and medical centers, allowing non-expert person-
nel and staff to easily capture patients with neuro-degenerative
diseases. Furthermore, no special setup is required and hu-
mans are recorded in a natural environment such as a standard-
sized room where they may walk in front of the camera.

2 Related Work

Human gait has been shown to be an important biometric
feature which has been applied in a wide range of tasks [14,
15,18]. It is beyond our scope to survey the full literature
on gait processing and instead we focus our discussion on
recent approaches in 2D and 3D as well as in the realm of
medical apps.

2.1 Video-based

Videos have been a traditional means for human gait acqui-
sition and exploration. Researchers have showed that video-
based gait is an indicative feature for the efficient recogni-
tion of a person’s gender [21,30], age [26] and identity. [23]
provides a thorough survey of video-based gait recognition
methods.

Silhouette plays a fundamental role in video-based ap-
proaches [29,5,25]. [21] propose a gate representation based
on features extracted from silhouettes of human walking mo-
tion for the purpose of person identification and classifi-
cation. Similarly, [20] introduce an algorithm that utilizes
spatio-temporal silhouette templates for gait recognition. [22]
partitions the human silhouette into meaningful components
and performs classification by studying the gait of each com-
ponent and their combinations. [3] represent the motion tra-
jectory space as a set of deforming basis shapes. Similar to
us, they use the discrete cosine transform (DCT) as means to
process motion in dual space in a compact and stable man-
ner.

The Gait Energy Image (GEI) was introduced as an ef-
fective representation for gait classification [13,26]. [28] use
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Fig. 2 Overview of our pipeline. Starting from a depth captured motion sequence (a), we extract the skeletal structure (b) and segment the motion
sequence into fixed size motion windows (c). We use a covariance based descriptor to represent joints motions and speeds (d) and compute a
classifier accordingly (e).

GEI as gait representation and cast the gait recognition prob-
lem as a bipartite ranking problem thus leveraging training
samples from different classes/people and even from differ-
ent datasets.

[2] proposes a super-resolution method for low frame-
rate videos by performing gait recognition in high frame-
rate examples. [24] perform gait-based gender classification
for humans walking freely in any direction. Similar to us,
they learn a distance metric for silhouettes from a training
set which yields the optimal gender classification. Similar to
us, [27] consider the subject’s speed in their gait recognition
algorithm. Nevertheless, they model speed using a cylindri-
cal manifold whose azimuth and height correspond to phase
and stride and use it to generate a constant speed gait se-
quence.

Nevertheless, video-based approaches are essentially 2D,
relying on high quality video and coherent silhouette extrac-
tion. In contrast, we introduce a simple acquisition system
using a single depth camera which captures high level 3D
gait information. Furthermore, our algorithm does not as-
sume a controlled environment and is invariant to walking
pose and step, yielding highly accurate results.

2.2 Kinect-based

Recently, significant efforts have been made to process depth
data obtained from Kinect cameras [35,11,7]. Kinect offers
an attractive processing platform due to its low-cost build,
non-intrusive acquisition, available software and coherent
skeleton extraction [4,9].

Kinect allows the extraction of a skeleton structure from
the depth frames, coherently connecting a set of joints by
rigid segments in time. Since it offers an efficient and com-
pact representation of 3D human motion, it has been suc-

cessfully applied for human gait recognition [38,39] and
action classification [4,40] purposes.

[19] introduce a gait recognition algorithm, which com-
putes a covariance matrix from the skeleton joints’ trajecto-
ries. This is an efficient representation which accounts for
the relative body parts movement and thus is invariant to
pose and walk cycle. In our work we use a similar covariance
based gait representation. Nevertheless, our method focuses
on gait anomalies which are more challenging due to their
irregular and complex motion patterns which are accounted.
Therefore, we enhance our gait representation with both po-
sitional and pace information. Furthermore, our classifica-
tion method is more elaborate to suffice data challenges.

[1] use horizontal and vertical distances between skeletal
joints to define an efficient feature vector which they use
for gait based human recognition. Authors demonstrate the
simplicity of extracting such features from depth camera as
opposed to 2D video based techniques and their significant
improvement to recognition accuracy.

In [40], the 3D rotational and translational relationships
between various body parts are represented as curved man-
ifolds in the Lie group. Action classification performs by
mapping action curves to vector space in Lie algebra. While
this representation performs well for some actions, our anomaly
gait data consists of many subtle fine motions which require
representing and weighting them in when computing our
classifier.

[8] proposes an algorithm to reliably compute joints tra-
jectories in scanned human motion from a side view. They
show the application of their joint extraction to gait analysis
for the ”Get Up and Go Test” in the field of rehabilitation.
While joints and trajectories may be noisy and even disap-
pear due to occlusions, our gait representation and classifi-
cation are robust and can handle such problems properly.

Finally, an evaluation of different Kinect-based feature
sets for gait recognition is performed in [9]. Among their
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findings, they show that mutual distances between joints are
more robust than angles and lower body parts are more reli-
able than upper body parts. In our work, we follow this di-
rection and encode relative joint positions as well as consid-
ering both lower and upper parts motions which have proved
to be significant in neural-degenerative diseases.

2.3 Clinical apps

Kinect captured motion data has been used recently also in
the context of clinical applications. Stone and Skubic [36,
37] analyze Kinect motion data to detect feet touching the
ground and automatically generate alerts to clinicians in re-
sponse to specific gaits of in-home residents.

A similar Kinect-based system is also used in [31] to
help preventing falls of elderly people at home. They an-
alyze gait, comparing normal versus abnormal walking as
well as transitions between sitting and standing. Thus, their
system monitors and detects events when elderly people are
likely to fall.

Gait analysis has been widely researched in the context
of Parkinson disease due to its prominent gait patterns such
as tremors and paralysis. In [17] a review is presented on
patents in the area of computerized gait disorder analysis
using computer vision methods.

Recently, it has been shown that Kinect sensors may be
efficiently utilized in the context of Parkinson disease (PD)
[36]. In [12], authors test accuracy of Kinect in compari-
son to an expert-level scanner, in measuring clinically rele-
vant movements in people with PD. Their study shows that
Kinect can accurately measure timing and gross spatial char-
acteristics of clinically relevant movements, although very
small movements, such as hand clasping are captured with
lower spatial accuracy. Nevertheless, we show that by learn-
ing the full body joints representation from Kinect in a ro-
bust manner, our classifier recognizes gait anomalies of de-
generative diseases with good accuracy.

Similar to us, [32] have recently shown the utilization of
Kinect for gait analysis in PD patients. In their work, they
detect specific gaits parameters which yield the best recog-
nition results (e.g. the variance of the shoulder center veloc-
ity). While both works demonstrate the potential of using
Kinect as a PD assessment tool, ours takes a general and
computes a classifier for gait anomalies arising from vari-
ous degenerative diseases such as PD and Hemiplegia. Thus,
we do not search specific gaits but instead represent the full
body motion as a generic vector storing joints positions and
velocities and compute the all-to-all covariance matrix.

3 Overview

Our aim here is to compute a robust gait anomaly classi-
fier which allows a simple and straightforward capture setup
which may be utilized by non-experts easily. Therefore, we
use an off-the-shelf Kinect1 camera and capture humans
walking freely in its field of view. To extract the moving
skeleton from the raw depth sequence, we use Kinect1’s
published SDK, yielding a 25 joints skeleton for un-occluded
body motion (see Figure 2 for an overview).

In a preprocessing step, we first normalize the extracted
skeletons to obtain a position and scale invariant skeleton
data. The full skeleton motion sequence is then segmented
into fixed sized possibly overlapping time windows which
we then process independently. Thus, our method is invari-
ant to walking state and does not assume a synchronized
walking cycle in time .

For each time window, we compute its trajectory de-
scriptor by first removing its high-frequency noise and then
computing all joints’ relative positional and speed informa-
tion in a covariance matrix.

Finally, we use a covariance matrix distance to learn
an optimal similarity metric from a training set. Our met-
ric learning is based on the term frequency inverse docu-
ment frequency (tf-idf) approach which yields an impor-
tance weight for different time windows.

In the testing step, given an unknown motion sequence,
we first normalize and compute its time windows descrip-
tors. Then, we classify the sequence using a K-nearest neigh-
bors (KNN) voting scheme which returns a matching score
for each class thus picking the highest scoring class as the
classification result.

4 Technical Details

4.1 Preprocessing and notations

Our human gait acquisition setup consists of a singleKinect1

depth camera mounted on a tripod positioned in a normally
lighted room. Humans are walking naturally along the rooms
length as the camera captures their walking motion in a frontal
view with their walking direction. This allows capturing longer
sequences as the depth field is 4.5 meters while the field of
view is limited to 0.5 meters.

Kinect1 allows capturing a human at 15 frames per sec-
onds and extracting its skeleton consisting of 25 joints in
time. Note that although better acquisition setups may be
assembled, a simple and generic low-cost acquisition is ade-
quate as our focus here is a robust and efficient gait process-
ing method.

Given a motion sequence in time t ∈ [1 . . . T ], it consist
of a set of skeletons, each of which is defined by 25 joints.
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We denote the ith joint at time t:

pti =

xtiyti
zti


Due to the frontal view direction, the skeleton size grows

as the subject moves towards the camera. To obtain a scale
invariant skeleton, we follow the observation that the eu-
clidean distance between the shoulder centre and the hip
centre should be fixed when the subject walks [19]. There-
fore, we normalize the skeleton joints w.r.t. their distance
from the hip center ‖pti − pthipCenter‖.

We further normalize the skeletons to a common size by
computing an average skeleton in terms of its skeletal parts
and normalizing all skeletons to have the same parts length
and thus yielding a scale invariant representation. Finally,
we also rotate skeletons to a common global orientation by
aligning the vector connecting the two hips with the global
X-axis.

Kinect typically generates noisy trajectories due to im-
perfect acquisition and distance from camera. Therefore, we
apply a noise removal step in which we remove the high-
est frequencies in the trajectory data using a low pass filer.
Following [19], we transform trajectories to frequency do-
main using a discrete cosine transform (DCT) and filter the
k highest frequencies (k = 50%) and transform back the
smoothed signal using inverse DCT.

A motion sequence encodes joint transformations in time
and may depend on the motion cycle and speed. To over-
come walking-cycle alignment and speed normalization prob-
lems, we segment each motion sequence into subsequences
by automatically sliding a fixed sized windows and cutting
the motion frames along time. Thus we represent a motion
sequence by multiple windows of small size, yielding an
walking-cycle and speed-invariant representation.

4.2 Gait covariance descriptor

To compute our gait descriptor, we encode body joints tra-
jectories using a covariance matrix which computes the cor-
relation between different joints in time in the spirit of [19].

To obtain invariance to absolute body positions, we use
a local relative coordinate system to represent joints. Thus,
we use the hip center as the origin of the local coordinate
system and represent the remaining 24 skeletal joints there,
yielding a normalized set of joints in relative coordinates per
frame denoted:

p̄t =

x̄t1, ..., x̄t24ȳt1, ..., ȳ
t
24

z̄t1, ..., z̄
t
24



Thus, the covariance matrix of skeletal joints positions
p̄, captures the relative positions of joints along the motion
trajectories and is defined as:

Cov(p̄) =
1

N − 1

T∑
t=1

(p̄t − µ)(p̄t − µ)T

where, t ∈ [1, T ], p̄t is a 3×24 dimensional feature point
at time t, N = 24, and µ is the mean of p̄t.

The positional covariance matrix considers only mutual
joint positions along time. This is mainly efficient in rep-
resenting gaits with a strong spatial variance. For example
it may easily recognize very distinct joint trajectory pat-
terns such as running vs. walking, raising a hand and etc.
In our case, Parkinson and other related neuro-degenerative
diseases consist motion deficiencies with very complex pat-
terns. Motion patterns such as Parkinsonian tremors have
very little spatial variance. Therefore, taking only the spa-
tial pattern of motion is insufficient for classification of such
subtle patterns.

Thus, we enhance our motion representation with joints
motion rate, i.e. speed. Similar to the positional covariance
matrix, we encode relative speeds of joints in a covariance
matrix. Let g be the gradient set of all joints, then:

gti =

xti − xt−1i

yti − y
t−1
i

zti − z
t−1
i


where i = [1,2,...,24].

The covariance matrix of g denoted Cov(g) is:

Cov(g) =
1

N − 1

T∑
t=1

(gt − µ)(gt − µ)T

where, t ∈ [1, T ], gt is a 24 dimensional point at time t,
N = 24, and µ is the mean of gt.

4.3 Learning gait similarity

We apply a supervised learning approach where we initially
learn a classifier from a set of known motion exemplars.
Thus, we are given a set of pre-classified motion windows
which we cut from longer sequences belonging to Parkinso-
nian, Hemiplegia and normal walking gaits. Windows seg-
ment motion sequences into arbitrary sets and therefore some
windows may contain distinctive gait features while others
may contain insignificant information. Thus, to measure a
window’s importance, we take a term frequency inverse doc-
ument frequency (tf-idf) approach with regards to the win-
dow dissimilarity value.
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To compute the dissimilarity between two covariance
matrices we use the matrix distance formulation introduced
in [10]:

δ(Cov(a), Cov(b)) =

√√√√ n∑
i=1

ln2λi(Cov(a), Cov(b))

where λi(Cov(a), Cov(b)) are the generalized eigenval-
ues ofCov(a) andCov(b) that satisfyCov(a)x = λCov(b)x,
and x is the corresponding generalized right eigenvector.
The dissimilarity measure between two symmetric positive
definite matricesCov(a) andCov(b) satisfies the following:

δ(Cov(a), Cov(b)) ≥ 0 and δ(Cov(a), Cov(b)) = 0

only if Cov(a) = Cov(b)

δ(Cov(a), Cov(b)) = δ(Cov(b), Cov(a))

δ(Cov(a), Cov(b)) + δ(Cov(b), Cov(c)) ≥
δ(Cov(a), Cov(c))

Having defined a covariance matrix distance metric, we
follow to learning a distinctive classifier for time windows
using tf-idf. Given a training window wc

q where c denotes
its class and q indicates its index (among class windows),
tf(wc

q) is the term frequency that measures the occurrence
frequency (tf) of wc

q in class c:

tf(wc
q) =

|wc|∑
i=1

sim(wc
q, w

c
i )

|wc|

where sim() is the binary distance between two windows
covariance matrices. For a window wc

q its positional p and
speed g matrices are simply concatenated and termedCovwc

q

for simplicity:

sim(wc
q, w

c
i ) = 1 if δ(Covwc

q, Covw
c
i ) < ε

= 0 otherwise

|wc| is the number of windows in class c.
Next we measure the distinctiveness of the window by

measuring the inverse frequency of its appearance in other
classes (idf), by counting the number of occurrences of wc

q

in all classes:

idf(wc
q) = log

|c|∑|c|
j occ(wc

q, j)

where occ(wc
q, j) is defined as:

occ(wc
q, j) = 1 if

|wj |∑
k

sim(wc
q, w

j
k) > 0

= 0 otherwise

Finally, for each window in our training setwc
q , we learn

its classification power, i.e. compute its distinctiveness w.r.t.
class c in the form of a weight:

weight(wc
q) = tf(wc

q)× idf(wc
q)

4.4 Gait classification

Given a test motion sequence s, we first segment it into fixed
sized time-windows of size h in the number of frames. In our
experiments, we evaluate for both different h values as well
as for overlapping and non-overlapping windows. For each
window we then compute its joints positional and speed co-
variance matrices.

Next, for each time window in the test sequence w∗q ∈ s
(∗ denotes an unknown class), we use k-nearest-neighbors
using our matrix similarity metric δ() to compute the k-
closest nearest neighbors k closest(w∗q ) in the training data
(we evaluate for different k in our experiments).

Classification performs per class c, using an averaged
weighted distance of w∗q to its k-closest neighbors in c as:

w distance(w∗q , c) =∑
wc

p∈k closest(w∗
q )

weight(wc
p) · δ(Cov(w∗q ), Cov(wc

p))

|wc
p|

where |wc
p| is the number of windows in the knn set of w∗q

of class c.
Finally, we compute the class similarity of s and c, de-

noted class sim(s, c) as the average weighted distance of
all windows in s to their knn windows in c:

class sim(s, c) =
1

|w∗q ∈ s|
∑
w∗

q∈s
w distance(w∗q , c)

and classify s as the class obtaining the maximal class sim(s, c)

(see algorithm pseudo-code in 1).

Algorithm 1 Gait Classification.
Input: classes C = {Normal(no), Hemiplegia(he),
Parkinson(pa)};

training windows set: wno, whe, wpa

test sequence s;
Output: class of s;

1: for each window w∗
q ∈ s do

2: set k closest(w∗
q ) as the k nearest neighbor windows of w∗

q ;
3: for each class c ∈ C and wc

p ∈ k closest(w∗
q ) do

4: w distance(w∗
q , c)+=weight(wc

p)δ(Cov(w
∗
q ), Cov(w

c
p))

5: class sim(s, c)+ = w distance(w∗
q , c)

6: set class of s as maxc class sim(s, c)

5 Results

To test our method, we have captured with a Kinect1 a
dataset of walking persons in different disease classes. Our
setup consists of a normal sized room of 5X6meters, with
normal daylight, in which we position the Kinect1 camera
on a tripod at the height of 1.0meters. The captured data
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was processed on a computer with Intel Core i7 312GHZ
with 64GB RAM. Computation times in terms of training
the classifier are in the range of few seconds.

To exploit the camera’s depth of field of 4.5meters we
captured humans in a frontal view as they walk towards and
away the camera, thus allowing to capture long sequences.
Thus, the number of the frames per walking sequence was
between 40 and 120. Differences between sequences lengths
were due to different step sizes and speed among difference
people.

Dataset captures three different classes of walking peo-
ple: normal (46 to 75 years old), Hemiplegia (50 to 83 years
old) and Parkinson (60 to 85 years old). For each class, 14
different people were captured walking along a line and fac-
ing the Kinect camera, at normal speed, wearing usual shoes
and clothes. For proper evaluation we have captured for each
person 5 independent walking sequences resulting in a 5×14

walking sets. Data also consists additional information on
the age, gender, pathogenic condition, clinical characteristic
of the subjects for an enhanced representation of the data.

Figure 3 consists excerpts from this dataset, showing
three walking humans of the three classes as they walk to-
wards the camera. The extracted skeleton which we use in
our processing is shown on the right.

5.1 Classification accuracy

To measure classification results we use the accuracy defi-
nition of acc = tp+tn

tp+fp+tn+fn , where tp is the number of
true positives, fp is the number of false positives, tn is the
number of true negatives, and fn is the number of false neg-
atives.

The parameters used in our experiments are:

– h determines the time-window size, i.e. the segmentation
step size of the sequence.

– k determines the number of nearest neighbors
– ε determines the threshold in the binary distance (sim())

between two windows covariance matrices. Specifically,
it defines a percent in the relative ordered distances.

In all our experiments, the parameters values we used are
[ε, k, h] = [0.3, 10, 10]. Out of 14 humans per disease, we
use 8 as training set and 6 for testing. There are possible

(
14
8

)
different selections of training and testing sets. In practice
we run 100 times, and each time randomly select a different
training and testing set.

Table 1 summarizes our classification accuracy for each
of the classes. Hemiplegia, depending on its severity and
type, has a significant effect on body functionalities. For
Parkinson, it’s cardinal clinical symptoms include bradyki-
nesia, rigidity, rest tremor and disturbances in balance. Nev-
ertheless, some subtle gaits such as distinctive hand temors
cannot be observed by our system. This is due to its low

Avg Best Worst
Normal 83.3% 94.4% 71.1%
Hemiplegic 77.1% 92.2% 67.8%
Parkinson 76.7% 90.0% 61.1%

Table 1 Classification accuracy

capture frame rate and resolution as well as due to the fil-
tering out of high frequencies in the denoising step. Our
method obtains good recognition rates for Hemiplegia and
has a slightly lower classification accuracy for Parkinson.

5.2 Comparisons

In Tables 2and 3, we compare our method with the state-
of-art methods introduced in [40] and [19]. “Covariance”
denotes the covariance matrix method of [19]. “Lie rel-
ative”and “Lie absolute” denote the Lie algebra methods
introduced in [40]. “Joint relative”, “joints quat. (quater-
nions)” and “joints absolute” are straightforward represen-
tations of the skeletal joints gaits. Relative are the concate-
nation of all bones vectors, starting from the head root node
and encoding each vector in its ancestor coordinate system.
Quaternions are the concatenation of all joints rotations along
the time window in quaternion representation. Absolute are
the simple concatenation of joints 3D coordinates.

Our method is better than state-of-the-art techniques for
classification of Hemiplegia and Parkinson. In Table 2 we
show that our method performs significantly better than oth-
ers in the case of Hemiplegia while for Parkinson the im-
provement is of a lower magnitude.

In Table 3, we summarize the average accuracy of the
methods for all classes. Note that our method is significantly
better, crossing the 90% for the best case and nearly 80% on
average. In fact, it outperforms state-of-art methods by 4.7%
for average accuracy and by 3.0% for best accuracy.

Note also that our method’s average accuracy performs
18.2% better than the average accuracy of the covariance
based approach in [19]. This is due to the enhanced repre-
sentation used by our method utilizing both joints speeds
and positions as well as our customized time window seg-
mentation

Figure 4 shows confusion matrices for the 3 classes com-
paring our method, with Lie relative and Relative joints. Our
method obtains a confusion matrix thus predicts better in
both positive and negative cases. Specifically, normal data
is classified correctly by all methods. Hemiplegia is slightly
confused as Parkinson and misclassfied by Lie and relative
joints methods. Parkinson is the most challenging and gets
lower classification accuracy than the other 2 classes in gen-
eral. Nevertheless, our method significantly outperforms the
others even in this challenging case.
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Fig. 3 Three excerpts from our dataset, showing normal, Hemiplegic and Parkinson walking sequences (top-to-bottom rows). Extracted skeletons
are on the rightside.

Normal Hemiplegic Parkinson
Ours 83.3% 77.1% 76.7%
Covariance 63.8% 61.1% 57.5%
Lie relative 79.2% 69.3% 74.3%
Lie absolute 74.5% 67.0% 65.2%
Joints relative 78.2% 70.2% 72.6%
Joints quat. 76.1% 67.0% 70.8%
Joints absolute 77.6% 67.4% 70.2%

Table 2 Classification comparison per class

Finally in Figure 5 we compare learning rates and con-
vergence of the 3 methods above, plotting accuracy vs. train-
ing time. Note that note that our method’s learning rate is the
steepest converging faster than the others.

Method Avg. Acc. Best Acc.
Ours 79.0% 91.1%
Covariance 60.8% 77.8%
Lie relative 74.3% 88.1%
Lie absolute 68.9% 78.5%
Joints relative 73.7% 85.2%
Joints quat. 71.3% 83.0%
Joints absolute 71.7% 84.5%

Table 3 Classification comparison summary

5.3 Robustness evaluation

To thoroughly evaluate our method, we have tested different
parameters and aspects of our method.

We evaluate the effectiveness of combination of joints
positional and speed information in our gait descriptor. Us-
ing only joints positions in our gait description (joint posi-
tions covariance), the average and best accuracy were 58.3%

and 70.0% respectively. Similarly, using only joints speeds
in our gait descriptor, the average and best accuracy were
55.0% and 73.3% respectively. As can be seen in Table 3 the
combination of both positional and speed descriptors (Ours)
improved significantly the performance (in comparison to
Covariance).

To compute a robust gait classifier, we choose various
combinations of walk sequences for training and testing. In
two different experiments, A and B, we have selected dif-
ferent training sets: in A 7 out of 14 and in B 9 out of 14.
We have also accounted for a minimum overlap of 2 sub-
jects between the two sets. Classification results were: in A
78.1 and 88.6 for average and best accuracy respectively; in
B 80.1 and 89.3 for average and best accuracy respectively.
We observe a natural overall increase in the accuracy from
7 to 9 subjects in the training set. Nevertheless the variance
is small and the increase rate is moderate, reflecting on our
classifier’s robustness to the training set.

Time window size. We evaluate the influence of time win-
dow size on our results in Table 4. Walk cycle refers to cut-
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(a) Our method

(b) Lie relative

(c) Relative

Fig. 4 Confusion matrix of disease classification. N, H and P refer to
Normal, Hermiplegy and Parkinson respectively.

ting walk sequences into synchronized walk cycles starting
from a specific walk configuration and returning to it.

Results show that time-windows of approximately size
10 yield an optimal result. By further increasing the time-
window size, we observe a constant decrease in accuracy.
This may be explained as large time-windows fail to repre-
sent local patterns in the motion due to its large size and the
accumulation of the sequence into one large matrix. Sim-
ilarly, shorter windows than 10 have lower accuracy since
small windows may cut significant patterns into simple seg-
ments without any distinctive features.
Robustness to noise. In order to evaluate the robustness of
our method to noise, we have performed several experiments
in which we insert different noise types.

In the first experiment, we insert noise to the positions
of the joints in the sequence, testing the robustness of our
classifier to such noise. Specifically, we move each joint po-
sition a random value in each of the X,Y, Z axes. The val-
ues range is defined as a percentage of the body’s bound-

(a) Our method

(b) Lie relative

(c) Relative

Fig. 5 Histogram of disease classification results.

Window Size Avg. Acc. Best Acc.
3 72.0% 76.1%
10 79.0% 91.1%
15 75.8% 85.1%
20 75.2% 84.4%
Walk Cycle 74.6% 82.8%
Full sequence 70.7% 80.0%

Table 4 Classification with different time windows .

ing box diagonal. In Figure 6(a), the graph describes our
method’s accuracy (y-axis) against the noise level inserted
to the joints (x-axis). Note that the accuracy decreases mod-
erately together with the increase in the noise magnitude.

Similarly, in a second experiment, we simulate missing
data. This experiment demonstrates the case where motion
data cannot be acquired due to occlusions and rapid move-
ment. This may cause parts of the skeleton and even full
frames to completely disappear.

To simulate this, we remove a percentage of data from
the captured sequences in terms of number of joints 6(b).
We demonstrate the relation between our method’s accu-
racy (y-axis) and the percentage of data we remove (x-axis).
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Specifically, in each sequence, we remove a random percent
of joints in the range of the current level. In Figure 6(c) we
randomly remove entire frames from the sequence up to a
percent (x-axis) Note that in both cases the accuracy drops
at a moderate rate.

(a) Joints noise

(b) Missing joints

(c) Missing frames

Fig. 6 Robustness to noise.

6 Discussion and conclusions

In this paper, we study the problem of identifying 2 different
degenerative diseases by using 3D human skeleton and tra-
jectories of joints captured by a Kinect sensor. We propose
an enhanced gait representation which considers both posi-
tional and speed data as well as segmenting the motion se-

quence into optimal windows. Experiments on real data val-
idate the effectiveness of the proposed in comparison with
state-of-the-art.
Limitations. Obviously the most prominent limitation of
our method is the low resolution of the data acquisition which
hamper representation and recognition of subtle motions.
These are of significant importance in gait anomalies and
their better acquisition may result in accuracy improvement.
Another limitation of our system is the field of view which
is limited to the camera’s depth of field. This may be short in
terms of natural walking and longer paths may be required.
Nevertheless, this limitation may be attended relatively easy
by combining and registering several Kinects together to ob-
tain a larger area coverage.
Future work. A possible extension of our work is to exploit
2D image features to improve the recognition rate. Kinect
sensor cannot capture accurately subtle movements of joints.
For example the hand tremor, which is the distinguished fea-
ture of Parkinson, may not fully reflect in the Kinect skeletal
data. This weakness might be complemented by analyzing a
corresponding 2D HD and high FPS video. Another possi-
ble future work is to extend our method to recognize more
diseases which have obvious clinical manifestations in hu-
man gait such as Ataxia as well as recognizing the severity
and level of each degenerative disease. It is meaningful to
develop a real system for the recognition and classification
of degenerative diseases to help medical personnel in their
examination and diagnosis both qualitatively and quantita-
tively.
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