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Abstract Textureless 3D object tracking of the object’s
position and orientation is a considerably challenging prob-
lem, for which a 3D model is commonly used. The 3D–2D
correspondence between a known 3D object model and 2D
scene edges in an image is standardly used to locate the 3D
object, one of the most important problems in model-based
3D object tracking. State-of-the-art methods solve this prob-
lem by searching correspondences independently. However,
this often fails in highly cluttered backgrounds, owing to
the presence of numerous local minima. To overcome this
problem,wepropose a newmethodbasedonglobal optimiza-
tion for searching these correspondences. With our search
mechanism, a graph model based on an energy function is
used to establish the relationship of the candidate correspon-
dences. Then, the optimal correspondences can be efficiently
searched with dynamic programming. Qualitative and quan-
titative experimental results demonstrate that the proposed
method performs favorably compared to the state-of-the-art
methods in highly cluttered backgrounds.
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1 Introduction

3Dobject tracking is a fundamental computer vision problem
and has been widely used in augmented reality, visual servo-
ing, etc. The aim of 3D object tracking is to estimate camera
poses (i.e., positions and orientations) with six degrees of
freedom (6DOF) relative to the rigid object [13].

Many algorithms have been developed in this area,
including feature-based tracking [7,11,22]. However, for
monocular-based textureless 3D object tracking, little infor-
mation can be used, owing the lack of texture. In most
situations, the edge information is the only cue that can
be used. Therefore, model-based tracking has been widely
used for textureless 3D object tracking [13]. With a given 3D
object model—which can be obtainedwith Kinect Fusion [9]
or 3D Max, for instance—the camera poses can be esti-
mated by projecting the 3D object model onto an image
plane. It is then matched with its corresponding 2D scene
edges in the image. In this paper, we focus on the monocular
camera, which is challenging when the object is texture-
less.

Rapid Tracker [6] is the first model-based tracker and
is based exclusively on edge information. However, addi-
tional methods have since become well-established and have
steadily been improving [3,5,20,23]. Though edge-based
tracking is fast and plausible, errors are common in images
with cluttered backgrounds, as shown in Fig. 1. In this
paper, we explore a critical problemwithmonocular cameras
regarding textureless objects in heavily cluttered background
environments. Several methods have been developed to
manage this situation with either multiple-edge hypothe-
ses [21,23] or multiple-pose hypotheses [2,12]. Recently,
a new method [20] based on region knowledge was adopted,
and it is more robust than previous methods. However, its
correspondences are searched independently, and drift is a
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Fig. 1 Critical problem with edge-based tracking in a highly cluttered
background. Left 3D object model projected on a target object (red line)
at frame t with a previous camera pose. Right edge image of a target
object in a highly cluttered background that may cause false matches
(local minima)

problem when the object has a complex structure in a highly
cluttered background.

In this paper, we propose a new correspondence method
based on global optimization, in which all of the correspon-
dences are searched interdependently by employing contour
coherence. This way, the optimal correspondences can be
searched efficiently with fewer errors. Like [20], our method
uses region knowledge to infer these correspondences, but
unlike [20], we build a graph model to describe the relation-
ship between these correspondences, rather than searching
them independently. In our searching scheme, candidates for
correspondences are first evaluated by gradient response and
non-maximum suppression along the normal lines. Then,
a graph model with source and terminate nodes based on
an energy function is adopted to establish the relation-
ship between all these candidate correspondences. Finally,
dynamic programming is adopted to search the optimal cor-
respondences efficiently. Experimental results demonstrate
that the proposedmethod is efficient in highly cluttered back-
grounds with arbitrary complex models.

2 Related work

Several different algorithms have been developed for 3D
object tracking, whether exploiting a single visual cue [5,7,
20], multiple visual cues [18,21], or additional sensors [14].
We refer the reader to [13] for more details. In this sec-
tion, we shall discuss only the research pertinent to our
proposal.

In monocular camera-based tracking, the algorithm first
finds the correspondences between 3D object model points
and 2D image points. Then, the algorithm estimates the 3D
pose of the object with these correspondences. Drummond
et al. [5] proposed a very simple strategy for searching the
nearest correspondence points by the intensity discontinu-
ity above a certain threshold in the normal direction of the
sample points. Marchand et al. [15] used pre-computed fil-
ter masks to extract the corresponding points in the normal
direction of the contour. However, these searching strategies
are less effective in heavily cluttered backgrounds and easily

trapped in local minima, despite the use of robust estima-
tors. To avoid the local minima, Vacchetti et al. [21] and
Wuest et al. [23] proposed using multiple-edge hypotheses
rather than single-edge hypotheses for searching the corre-
spondences, such that more than one correspondence point
is used for one sample point when computing the pose.
This improves the robustness of the algorithm. However,
these approaches face difficulties when outliers are close to
the correct correspondence, and they require considerable
processing time.

Multiple-pose hypothesis methods [2,12] have also been
proposed to improve the robustness of the algorithm, and a
particle-filter strategy is usually adopted by these methods.
Such methods are effective at avoiding undesirable errors
resulting from background clutter. However, the computa-
tional cost is usually too high for real-time object tracking,
because larger state spaces are needed for more complex
scenes.

Whereas many methods merely use the edge information
of the object model, compromising them in heavily clut-
tered backgrounds, other methods use region knowledge to
improve the robustness of the algorithm. These methods are
based on level-set region segmentation and are robust for
3D object tracking [4,16,17,19]. Typically, such approaches
formulate a unique energy functional framework for simul-
taneous 2D segmentation and 3D object tracking. The 2D
segmentation results can be used for pose estimation, and
the 3D object model, in turn, improves the robustness of
2D segmentation. However, such region-based methods are
dependent on the segmentation results. Consequently, it is
difficult to derive the accurate pose, because segmentation
cannot guarantee precise results in a cluttered environment.
As an alternative to region segmentation, Seo et al. [20]
exploited local region knowledge for reliably establishing
3D–2D correspondences with an edge-based approach, and
their method is much more robust than previous methods.
However, its correspondences are searched independently,
meaning that drift is a problem in heavily cluttered back-
grounds with complex object models, owing to the local
minima.

3 Problem statement and notation

For monocular model-based 3D object tracking, when pro-
vided with a 3D modelM, the aim is to estimate the camera
pose Et = Et−1�

t
t−1 in the current frame t when provided

with pose Et−1 from the previous frame t − 1. The infinites-
imal camera motions �t

t−1 can be computed by minimizing
the errors between the 3D model projected with the previous
camera pose and its corresponding 2D scene edges mi in the
image, such that
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�̂t
t−1 = argmin

�t
t−1

N∑

i=1

‖mi − Proj(M;Et−1,�
t
t−1,K)i‖2,

= argmin
�t

t−1

N∑

i=1

‖mi − KEt−1�
t
t−1 · Mi‖2,

= argmin
�t

t−1

N∑

i=1

‖mi − si‖2, (1)

where K is the camera intrinsic parameter, assumed to be
known a priori, E is the camera extrinsic parameter, Mi

denotes a sample point from the 3D modelM, si is a sample
point from projected 3D model in the image, and N is the
number of si .

With this minimization scheme, we can derive the accu-
rate pose of the camera in the current frame. The key problem
with this minimization scheme is that given the 3D sample
points Mi , the corresponding 2D sample points mi must be
accurately determined in the image. This is difficult when the
object is in a highly cluttered backgroundwith complex struc-
ture. In the next section, we explain how this correspondence
problem can be solved efficiently with global optimization.

Like [20], we do not consider all of the data from the 3D
objectmodel; rather, wemerely use the visiblemodel contour
data, because the model data are usually complex and its
valuable interior data are especially difficult to extract.

4 Correspondence with global optimal searching

In this section, we describe our global optimal searching
algorithm for the correspondences between 3D object model
points and 2D image points.

4.1 Overview

To search the optimal correspondences in the image, we first
discover the candidate correspondences ci for each correct
correspondence mi . Each ci may include some candidates,
denoted by ci1, ci2, . . . , ci j , . . ., where . . . indicates that the
number of candidate correspondences ci may be different
when they belong to a different correspondencemi , as shown
in Fig. 2.

LetA = (α1,α2, . . . ,αN ),whereαi = (αi1, αi2, . . . , αi j ,

. . .) = (0, 0, . . . , 1, . . .) indicating whether the candidate
correspondence ci j belongs to the correct correspondence
mi . Note that αi j ∈ {0, 1} and ∑

j αi j = 1. Then, A can be
obtained by minimizing the following energy function:

E(A) =
∑

i, j

Ed(αi j ) + λ

N−1∑

i=1

∑

j,k

Es(αi j , αi+1,k), (2)

Fig. 2 Candidate correspondences. Left each green line denotes the
1-D scan line along the normal vector of the projecting point si . Right
candidate correspondences ci in each searching line (i.e., red squares).
The number of candidates may be different in each searching line

where Ed(αi j ) is the data term measuring the cost, under the
assumption that the candidate correspondence ci j belongs to
the correct correspondencemi . Es(αi j , αi+1,k) is the smooth-
ness term encoding prior knowledge about the candidate
correspondences, andλ is a free parameter used as a trade-off
between the data and smooth terms.

Typically, the data term Ed(αi j ) can be computed as the
negative log of the probability that ci j belongs to candi-
date mi , such that Ed(αi j ) = −log p(ci j |mi ); p(ci j |mi )

can be computed using a color histogram with nearby
foreground and background information. The smooth term
Es(αi j , αi+1,k) is not dependent on the color histogram. It
is only dependent on the consistency between the two can-
didates ci j and ci+1,k and whether they are neighboring.
If two candidates ci j and ci+1,k belong to the correspon-
dences mi and mi+1, respectively, they are neighboring, and
the term Es(αi j , αi+1,k) is small. Typically, Es(αi j , αi+1,k)

can be defined as Es(αi j , αi+1,k) = αi j · αi+1,k · exp(‖xi j −
xi+1,k‖2/σ 2), where xi j and xi+1,k are the locations of the
candidate correspondences ci j and ci+1,k in the image.

Equation 2 can be transformed into a graph model with
source and terminate nodes that can be solved efficiently
with dynamic programming. In the following subsections,we
discuss these candidate correspondences (Sect. 4.2),we show
how the probability p(ci j |mi ) can be computed (Sect. 4.3)
and explain how to efficiently solve Eq. 2 (Sect. 4.4).

4.2 Candidate correspondence

To efficiently search the correspondences between a pro-
jected 3Dobjectmodel and the 2D scene edges, the following
must be calculated. At each sample point Mi , we search
its corresponding 2D scene edge on a 1D scan line along
the normal vector of its projecting point si . We assume
that the correct correspondences mi exist in the intensity
change along the searching line of each sample point si . The
1D searching lines li are defined using Bresenham’s line-
drawing algorithm [1],which covers the interior, contour, and
exterior of the object in the image. The candidates for cor-
respondences ci are computed by 1D convolution of a 1× 3
filter mask ([−1 0 1]) and 1D non-maximum (3-neighbor)
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Fig. 3 Global optimal searching for correct correspondencesmi . aThe
search lines (green lines) in the image, where the red line is the con-
tour of projected 3D object model in the previous camera pose Et−1.
b The new image L built by stacking the searching lines, where �− is
the background regions and �+ is the foreground regions. The size of
new image L is 61× 150, which is much smaller than the origin image

(960 × 540). c The correct correspondences searched by our global
optimal algorithm (the white dots denote the correct correspondences
and the red dots denote the candidate correspondences ci ). d The cor-
rect correspondences (white dots) searched by local optimal algorithm
in [20]

suppression along the lines. To increase robustness, we sepa-
rately compute the gradient responses for each color channel
of our input image, and for each image location using the
gradient response of the channel whose magnitude is largest,
such that

ci j = argmax
C∈{R,G,B}

‖ � IC(li j )‖, (3)

where C is the color channel belonging to one of the R,G, B
channels, li j is the location in the searching line li , and IC(.) is
the intensity in each channel. The candidate correspondences
ci can then be extracted by the maximum magnitude norm
larger than a threshold. In our experiments, this threshold is
set to 40, and the range of each search line li is set to 61
pixels (30 for the interior, 1 for the contour, and 30 for the
exterior), as illustrated in Fig. 3.

4.3 Color probability model

Before describing the probability p(ci j |mi )of each candidate
ci j—as [20] proceeds to do—we first introduce a new image
L, which is a set of searching lines li .L can be built simply by
stacking each searching line and arranging it symmetrically,
where the left area of L indicates the exterior, the right area
of L is the interior, and center of L is the contour of the
3D object projecting into the image, as shown in Fig. 3(b).
The size of L is much smaller than the input image, where
the resolution is the length of li multiplied by the number
of si . Modeling the probability in this image is much faster
and efficient than calculating the probability in the original
input image, because we do not need to compute unnecessary
information about the object in the input image.

After deriving the new image L, we can build the fore-
ground probability for the object based on the right side of
the columns in the image L and the background probability

of the object based on the left side. Therefore, the probability
p(ci j |mi ) can be determined from the foreground probability
and the background probability. Specifically, if the candi-
date ci j belongs to the correct correspondence mi , its left
area belongs to the background of the object and right area
belongs to the foreground of the object.

To model the probability of the foreground and back-
ground, we adopt a nonparametric density function based
on hue-saturation-value (HSV) histograms. The HSV color
space decouples the intensity from colors that are less sensi-
tive to illumination changes. Thus, it is more suitable than the
RGB color space. In our experiments, we take H and S com-
ponents from the HSV color space. Of these, V components
are sensitive to illumination changes. An HS histogram has
N bins that are composed of bins from the H and S histogram
(N = NH Ns), and this is represented by the kernel density
H(�) = {hn(�)}n=1,...,N , where hn(�) is the probability of
a bin n within a region �. After defining the nonparametric
density function H(�), we can compute the probability of
the foreground and background. Supposing that P f (�+) and
Pb(�−) indicate the probability of the foreground and back-
ground, respectively, then P f (�+) = {hn(�+)}n=1,...,N and
Pb(�−) = {hn(�−)}n=1,...,N . Here,�+ is the right side and
�− is the left side of the columns in the image L in Fig. 3b.

To compute the probability of each candidate correspon-
dence ci j , we also define two relative probabilities P f (�+

ci j ),

Pb(�−
ci j ) for ci j , where�+

ci j and�−
ci j are the foreground area

and background area of candidate ci j , respectively. Because
the left-side regions of the candidate correspondences in the
searching line li are probable, the background region and
the right-side regions of the candidate correspondences in
the searching line li may be the object regions. Thus, we
define the foreground area of candidate ci j in line li as the
region from the j th candidate to the ( j + 1)th candidate,
ci, j < �+

ci j < ci, j+1. Likewise, we define the background
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area of candidate ci j in line li as the region from the j th can-
didate to the ( j − 1)th candidate, ci, j−1 < �−

ci j < ci, j , as
illustrated in Fig. 3c.

After deriving these histograms, we measure their sim-
ilarity by computing the Bhattacharyya similarity coeffi-
cient between two probabilities in an HS space, such that
D[�,�] = ∑N

n=1
√
hn(�)hn(�). Following this, we find

the score for the foreground and background of each candi-
date ci j as follows:

D f
i j [�+,�+] =

N∑

n=1

√
hn(�+)hn(�

+
ci j ),

Db
i j [�−,�−] =

N∑

n=1

√
hn(�−)hn(�

−
ci j ).

(4)

If candidate ci j belongs to the correct correspondence mi ,

then its correspondingD f
i j andDb

i j are both large. If candidate
ci j does not belong to the correct correspondence mi , then

at least one corresponding of D f
i j ,Db

i j is small. According
to this property, we can define the probability p(ci j |mi ) of

candidate ci j simply as p(ci j |mi ) = 1
Z · D f

i j · Db
i j , where Z

is the normalizing constant that ensures
∑

j p(ci j |mi ) = 1.
In some situations, the interior of the object can be influ-

enced by text or figures on the object’s surface (so-called
“object clutter”) even though the target object has no or lit-
tle texture. Thus, it is insufficient to merely use the object
foreground or background to respectively measure D f

i j and

Db
i j of candidate ci j . In such situations, when computing

the scoreD f
i j , we acquire not only the foreground histogram

P f (�+), but also the backgroundhistogram Pb(�−).This is
because when the candidate ci j turns out to be object clutter,
the appearance of it can be relatively far from the background
region even though it is not very close to the appearance of the
object region. A similar property is found when computing
the scoreDb

i j .Thus, like [20], we can evaluate the foreground
and background scores in multiple phases as follows:

S f
i j = �(θ)D f

i j [�+,�+] + (1 − �(θ))(1 − Db
i j [�−,�+]),

Sb
i j = �(θ)Db

i j [�−,�−]+(1−�(θ))(1−D f
i j [�+,�−]),

(5)

where �(θ) is the phase function defined as �(θ) = 1,
if D f

i j [�+,�+] > τ ; otherwise, �(θ) = 0. Finally the
probability for candidate ci j can be defined as p(ci j |mi ) =
1
Z · S f

i j · Sb
i j .

4.4 Graph model

We now transform Eq. 2 into a graph model to solve it effi-
ciently with dynamic programming. Typically, a directed

Fig. 4 Graph model: the nodes denote the candidate correspondences
ci j ; the edges denote the connection between two near candidate corre-
spondences ci j and ci+1,k

graph G = 〈V, E〉 is defined as a set of nodes (with vertices
G) and a set of directed edges (E) that connect these nodes.
The graph related to Eq. 2 is shown in Fig. 4. Each node v in
the graph denotes the candidate correspondence ci j , and its
value is the cost Ed(αi j ). Each edge e in the graph connects
node ci, j and node ci+1,k , and assigns a non-negative weight
Es(αi, j , αi+1,k). There are also two special nodes, separately
called source S and terminal T . The source node connects
to all the candidate correspondences c1, j , and the terminal
node connects to all the candidate correspondences cN , j . The
weight of the source and terminal connection edges is equal
to 1 in both cases. By defining this weighted-directed graph
model, Eq. 2 can then be seen as an equation for finding a
minimal-cost path from the source node S to the terminal
node T .

In the case of minimal-cost path, a heuristic method for
solving this problem is to enumerate all the paths, to find
the one with the minimal cost. However, this is unnecessary,
because for each node, the path from its source only depends
on its previous nodes. Suppose the minimal cost from source
S to node ci j is denoted as cost(ci j ). Then, for node ci+1,k , its
minimal cost is cost(ci+1,k) = min{cost(ci j )+Ed(αi+1,k)+
Es(αi j , αi+1,k)}. Here, j is from 1, 2, . . . the index of its
previous nodes ci j . The minimal cost for the first nodes
c1 j is denoted as cost(c1 j ) = 1 + Ed(α1 j ), j = 1, 2, . . .,
and the minimal cost for the terminal node is cost(T ) =
min{cost(cN j )+1}, j = 1, 2, . . .. After finding theminimal-
cost path (i.e., the red line in Fig. 4), we trace back the path to
find all the correct correspondences mi , (see the white dots
in Fig. 3c.

4.5 Discussion

Compared with local optimal searching (LOS) [20], the
global optimal searching (GOS) strategy has inherent advan-
tages, because the correspondence points for the contour of
the object are essentially continuous in the video. Thus, inso-
far as our global optimal searching strategy directly captures
this inherent property, it is more effective for the complex
3D object models and highly cluttered backgrounds.
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By connecting all the correspondence points mi , these
points construct the contour of the object in the image. From
this point of view, the correspondence problem is similar
to the segmentation problem, insofar as they both must dis-
cover the contour of the object in the image. However, unlike
the segmentation problem, we do not need to segment out
every pixel in the contour of the object. Rather, we merely
need to discover the correspondence points. Moreover, the
accuracy and speed are bottlenecked with the state-of-the-art
segmentation methods. Consequently, they cannot be used
for real-time 3D object tracking.

5 Experiments

To examine the effectiveness of the proposed method, we
tested it on seven different challenge sequences and com-
pared it with two state-of-the-art methods including LOS
method [20] and PWP3D method [16]. We implemented the
proposedmethod inC++, running the algorithmona3.2-GHz
Intel i5-3470 CPU, with 8 GB of RAM, achieving approxi-
mately 15–20 fps with unoptimized code. The initial camera
pose and camera calibration parameters were provided in
advance. All of the 3D object models were represented by
wireframes with vertexes and lines, and we visualized the
resultswith thewireframes directly on themodel in the video.

5.1 Implementation

To implement our proposedmethod, we used the Levenberg–
Marquardt method to efficiently solve Eq. 1. Specifically, the
6DOFcamera poses can be represented by x, y, z, r x, r y, r z,
where x, y, z denote the position of the camera in relation
to the object, and r x, r y, r z denote the Euler angles, repre-
senting rotations around the x, y and z axes. The framework

Algorithm 1 Tracking framework
Input: 3D object modelM, camera pose E1 in the first frame,
and camera intrinsic parameters K
Output: camera pose Et in frame t
1: For each frame t = 1 : T, T is the total number of frames.
2: repeat
3: Get sample points Mi in 3D object model contour;
4: For each projected sample point si of Mi , computing

some candidate 2D image points ci in its normal
direction by Equation 3;

5: For each projected sample point si , computing its
correct correspondence mi from these candidates ci
by Equation 2 through Dynamic Programming;

6: Using Equation 1 to solve the 6DOF pose �t
t−1

by Levenberg-Marquardt method;
7. Updating the pose Et−1 = Et−1�

t
t−1;

8: until reprojection error < min or iteration > max
9: Get the current pose Et = Et−1.
10: end for

of our 3D object tracking method can be found in Algo-
rithm 1. In each frame, the iteration is terminated when the
re-projection error is small (< 1.5 pixel) or when the num-
ber of iterations is more than a pre-defined number (> 10).
Usually, only 4–5 iterations are required for each frame.

For the visible model contour data, to deal with arbitrary
complex 3D object models, we first project the lines of the
3D objectmodel into the image, before finding its 2D contour
in the image. This 2D contour corresponds to the contour of
the 3D object model. For the points from the contour of the
3D object model, its corresponding projected 2D points must
exist in the contour of the image. In this way, we can filter out
the lines of the arbitrary complex 3D object model leaving
only the contour data. Then, the filtered 3D object model
is regularly sampled, generating the 3D object model points
Mi . The number of sampled points N is dependent on the 3D
object model, and we set N = 150 in all our experiments.

Furthermore, we set NH and NS to 4 in the HS histogram,
and λ in Eq. 2 is set to be 1.

5.2 Quantitative comparison

For a quantitative evaluation, we compared the estimated
6DOF camera poses from the well-known ARToolKit [10]
as the ground truth using the Cube model. The coordi-
nates of the markers and the 3D object were registered in
advance. We also compared the proposed method with the
LOS method. As shown in Fig. 5, the trajectories estimated
with the proposed method were comparable to the ones from
the ARToolKit in all tests. With the LOS method, however,
the trajectories began to drift at Frame 250, because it is
easy for the LOS method to find the correspondence points
at the inner edge of the model. More results can be found in
the qualitative comparison, discussed in Sect. 5.3. The aver-
age angle difference with our algorithm was approximately
2◦, and the average distance difference was approximately
2.5 mm.

5.3 Qualitative comparison

For a qualitative comparison, we tested the proposed method
with seven different sequences with complex 3D object mod-
els in highly cluttered backgrounds.

We first compared our GOS method with LOS method
by hollow-structured Cube model. The hollow-structured
Cube model (10,000 faces) was challenging for the algo-
rithm, owing to the inner hollow of the model, as shown in
Fig. 6. Nevertheless, whereas LOS method easily finds the
correspondence points at the inner hollow edges and drifts
quickly in this sequence, our GOS method passed the entire
sequence perfectly.

We then compared our GOSmethodwith PWP3Dmethod
by Bunny model (5000 faces). As shown in Fig. 7, owing to
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Fig. 5 Quantitative comparison of the proposed method, LOS method, and ARToolKit. The red curves denote our proposed GOS method; the
green curves denote LOS method; and the blue curves denote the ground truth, which is captured by ARToolKit

Fig. 6 Comparison of the Cubemodel between proposedGOSmethod
andLOSmethod.First row result of ourGOSmethod; second row result
of LOS method. Second, fourth, and sixth columns are searching lines

L where the white dots denote the correct correspondences mi and red
dots denote the candidate correspondences ci

Fig. 7 Comparison of the Bunny model between proposed GOS method and PWP3D method. First row result of our GOS method; second row
result of PWP3D method

the cluttered background, PWP3D method drifts in many
frames, revealing a deficiency in the algorithm, whereas our
GOS method can pass the entire sequence perfectly.

More experimental results are shown in Figs. 8 and 9.
In Fig. 8, the Simple Box model, Shrine model and Sim-
ple Lego model are presented. For the Simple Box model,
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986 G. Wang et al.

Fig. 8 Results of simple Box model, Shrine model and Simple Lego model, visualized by wireframes. First row denotes the result of Simple Box
model; second row denotes the result of Shrine model; third row denotes the result of Simple Lego model

Fig. 9 Results of Vase model and Complex Lego model, visualized by
wireframes. First column denotes the object in the scene and its scene
edges.Other columns denote the results of Vase model (first and second

rows) and Complex Lego model (third and fourth rows) by our GOS
method. The left down corner of the image denotes the searching line

it is easy for the algorithm to drift, owing to the similarity
in the appearance of the Simple Box model to the back-
ground and skin color of the hand. The Shrine model has
a symmetrical structure, and this is ambiguous for the algo-
rithm. However, the tracking performance of ourmethodwas
not considerably degraded even with heavy occlusions. The

Simple Lego model has multiple color; thus, our tracker can
perform regardless of whether the object had a single color
or multiple color.

In Fig. 9, the Vase and Complex Lego models are pre-
sented, with 10,000 and 25,000 faces, respectively. The
structure of the Vase model is complex and has ambiguous
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Fig. 10 The influence of different initial camera pose for the Simple Box model, where the white lines denote the initial camera poses, and the red
lines denote the tracking results

aspects as well. When the user moves the 3D object model,
it is easy to drift, owing to the complexity of the model and
background. Nonetheless, our method performed well. The
Complex Lego model is constructed with basic Lego parts,
and the model has multiple colors, which leads to erroneous
correspondence points, owing to the little color information
for some parts of the model (e.g., the green baseplate of the
model). However, because of the global constraint on the
correspondence points, our method worked perfectly in this
sequence.

Next, we examined the influence of the initial camera pose
for the object tracking. We set different initial camera poses;
however, the tracker can get the accurate results, as shown in
Fig. 10, which means that the different initial camera poses
do not influence much about the robust of the tracking.

5.4 Limitations

Though our method is robust in most situations, it still has
some limitations. For example, our method only depends on
the contour of the object, resulting in ambiguity to the pose
when the object has a symmetrical structure. This presents a
difficulty when we exclusively rely on contour information
for tracking, because the different poses of the object may
have the same 2D projected contours. In future work, we will
consider the inner structure of the object, rather than merely
the contour information. This may improve the performance
of the tracking.

Furthermore, our method drifts when the object moves
quickly and has a color similar to that of the background,
or even in the heavy occlusion. However, with the state-of-
the-art 3D object detection [8], we can easily reinitialize the
method and repeat the process of tracking the object.

6 Conclusion

In this paper, we presented a new correspondence search-
ing algorithm based on global optimization for textureless
3D object tracking in highly cluttered backgrounds. A graph
model based on an energy function was adopted to formulate
the problem, and dynamic programming was exploited to
solve the problem efficiently. In directly capturing the inher-
ent properties of the correspondence points, our proposed

method is more robust than local optimal searching meth-
ods, which search the correspondence points independently.
Moreover, our method is more suitable for situations with
complex 3D object models in highly cluttered backgrounds.

In future work, we will consider exploring the inner struc-
ture to solve the ambiguity of the pose when the object has
a symmetrical structure, and will also consider combining
our proposal with a 3D object detection method to solve the
initialization and re-initialization of the 3D object tracking.
We believe that by combining our proposal with detection,
the performance of the trackingwill be further improved, and
that we can demonstrate its feasibility for practical applica-
tion.
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