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Figure 1: In a complex indoor scene (left), our method detects functional mobilities of furniture object and parts (zoom-ins)
allowing easy manipulation and reorganization (right).

Abstract

In this work we introduce the mobility-tree construct for high-level functional representation of complex 3D indoor
scenes. In recent years, digital indoor scenes are becoming increasingly popular, consisting of detailed geometry
and complex functionalities. These scenes often consist of objects that reoccur in various poses and interrelate
with each other. In this work we analyze the reoccurrence of objects in the scene and automatically detect their
functional mobilities. Mobility analysis denotes the motion capabilities (i.e. degree of freedom) of an object and
its subpart which typically relates to their indoor functionalities. We compute an object’s mobility by analyzing
its spatial arrangement, repetitions and relations with other objects and store it in a mobility-tree. Repetitive
motions in the scenes are grouped in mobility-groups, for which we develop a set of sophisticated controllers
facilitating semantical high-level editing operations. We show applications of our mobility analysis to interactive
scene manipulation and reorganization, and present results for a variety of indoor scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

† Corresponding authors: Hui Huang (hhzhiyan@gmail.com),
Baoquan Chen (baoquan.chen@gmail.com)

1. Introduction

Indoor scenes play an important role in living environments
which, together with buildings, outdoor furniture and flo-
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Figure 2: Extracting mobilities from repeating chairs near a table. We detect rotational mobility of chairs around the table
(left), translational mobility of armrests and chair legs (mid-left), rotational mobility of wheels and chair backs (mid-right). The
regularized scene using our mobility controllers is on the right.

ra, constitute the urban landscape. Flourishing fields such as
video games, urban planing and digital cities, largely bene-
fit from the availability of indoor scene models. Fortunately,
large 3D indoor scene corpuses such as Google (Trimble)
3D Warehouse and World of Warcraft are becoming pub-
licly available. With their popularity, virtual indoor scenes
are becoming increasingly complex, in terms of their geo-
metric detail and object functionalities.

In recent years we observe a constant increase in the number
of digital indoor scenes that are generated. This poses an im-
mediate need for efficient modeling and manipulation tools.
While interior designers follow numerous high-level guide-
lines in producing indoor layouts [Lyo08], amateurs rely
on more intuitive rules such as alignment with prominent
features and positioning against walls. In both cases interior
design is challenging since it requires jointly optimizing a
multitude of functional and visual criteria.

Indoor scenes are typically composed of a large number of
objects. The multitude of objects define a large and com-
plex variety of object interrelations which derive from their
functionalities. For example, chairs are located near tables,
lamps are on top of desks, books are organized vertically on
shelves etc. Associated with the object functionalities are of-
ten a set of predominant motions that can be performed by
the object or its subparts. We denote the motions prescribed
by an object’s functionality as its mobility, which defines the
specific degrees of freedom, types of motions, axes and lim-
its. For example, furniture elements (such as doors revolving
around doorposts, chair backs reclining, etc.) consist of mov-
able parts to serve their functionalities. A key point in ma-
nipulation of large scale digital indoor scenes is the analysis
and modeling of the rich functional mobility information.
An immediate application of it is scene editing and reorga-
nization (Figure 1).

The prevalence of digital 3D indoor scenes has been draw-
ing much attention in recent years, presenting methods for
automatic scene generation [MSK10, MSL∗11, YYT∗11,
FRS∗12], and reconstruction through classification [NXS12,
KMYG12]. Mobility analysis of 3D objects has been pre-

viously studied [GG04, XWY∗09, ZFCO∗11, MYY∗10,
WXL∗11]. In these works, mobility captures the natural de-
grees of freedom of individual objects and their subparts.
In our work, we detect the functional mobility of object-
s and their subparts from their interrelations and reoccur-
rences in the scene. We develop a hierarchical construct de-
noted mobility-tree, which allows easy manipulation of the
objects in the scene compatible with their functionalities.

Our key idea is to detect the functional mobility of parts and
subparts by analyzing their poses and interrelations in a stat-
ic 3D scene ( Figure 2). We achieve this by segmenting the
scene into a tree hierarchy based on support interrelations
in the scene. For example, an indoor scene, is first segment-
ed into supporting structures (floor, walls, ceiling) and sup-
ported objects (furniture, pictures, lights). Segmentation by
support relations repeats recursively until reaching furniture
parts that are unbreakable.

We use the tree hierarchy to detect the functional mobilities
of objects and their parts. We analyze the support relations
in the tree to infer certain degrees of freedom for each sup-
ported node with respect to its supporting node (e.g. apples
translating on a table). We denote this as weak mobility con-
strains as it allows free movement within the scope of the
supporting surface. We proceed by searching for repeated
instances of the same objects and parts in the scene. We ana-
lyze pose differences of repeated instances and infer motion
axes and limits. We denote this as hard mobility constraints
since only translation and rotation motions along certain ax-
es are permitted (e.g. drawers translating in or out of a cab-
inet). Finally, we derive interactive controllers for sophisti-
cated high-level editing and manipulation of indoor scenes
that conforms to objects’ functionalities.

Our main contribution is an algorithm for detecting motion
behaviors of objects in a general static indoor scene. This is
achieved by a novel hierarchical construct which segments
the scene into meaningful parts and encodes their support
interrelations. We show a novel algorithm for high-level mo-
bility detection by analyzing support interrelations as well
as pose variation of reoccurring instances. The resulting
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mobility-tree allows users to easily manipulate objects in a
semantically meaningful way. As a result, we turn the static
scene into a dynamic and easily tractable one.

2. Related work

Our work combines ideas from two research fields: func-
tional mobility analysis and 3D indoor scene processing. We
therefore divide our related work discussion into these two
domains as below.

Functional Mobility Analysis The mobility of individual
objects and their parts has been widely explored in the past
in context of shape aware deformation and animation. These
methods focus on motion detection of individual objects us-
ing geometrical considerations and different heuristics.

Kraevoy et al. [KSSCO08] presented a non-homogeneous
resizing technique for man-made objects. Xu et
al. [XWY∗09] presented a joint-aware shape deformation
technique using slippage analysis to detect joint-constraints.
Cabral et al. [CLDD09] allow the user to interactively
modify lengths of edges, while constraining angles for mod-
eling textured architectural scenes. Wang et al. [WXL∗11]
built a graph which encodes inter-part symmetry and
self-symmetries of objects for intuitive shape editing.

Similar to us, Mitra et al. [MYY∗10] computed the func-
tional mobilities of mechanical objects from a static model.
Their method focuses on the visualization of inner motions
of individual CAD objects. In contrast, our problem domain
is indoor scenes, analyzing functional mobility from multi-
ple objects, their repetitions and interactions.

Recently, Zheng et al. [ZFCO∗11] presented a component-
aware shape manipulation technique using controllers that
capture the natural degrees of freedom. Motion informa-
tion is automatically propagated to other components during
manipulation, to preserve their interrelations. In contrast to
these methods, we focus on large scenes and automatically
compute model functional mobilities of parts and subparts
using a hierarchical construct.

Indoor Scene Processing The problem of efficiently ma-
nipulating the vast amount of information typical in indoor
scenes is a challenging task.

An early work [BS95] defined object associations to deter-
mine valid and desirable transformations for objects manip-
ulation in the scene. Kjolass [Kjo00] presented a system
for automatic placement of furniture into a given floor plan
while recursively resolving spatial conflicts. To reduce ef-
forts of 3D scene generation, automatic rule-based methods
have been suggested [XSF02, AON05, GS09]. These meth-
ods generally define an energy functional representing the
goodness of a layout, and minimize it using optimization
techniques. Instead of looking for general constraints and

global rules for scene generation, our work detects objects
mobilities for scene manipulation.

More recently, Merrell et al. [MSK10] presented a method
for automated generation of building layouts by synthesiz-
ing architecture using a Bayesian network. An interactive
furniture layout system was presented in [MSL∗11] which
suggests furniture arrangements from a precomputed density
function of interior layouts. Fisher et al. [FSH11] showed an
efficient graph representation of semantic relationships for
measuring similarity of scenes. Yu et al. [YYT∗11] analyze
hierarchical and spatial relationships of furniture objects to
synthesize new arrangements. Fisher et al. [FRS∗12] have
recently presented a method for synthesizing scene arrange-
ments from examples using an occurrence model. Their
model groups objects according to their local neighborhood,
thus capturing the continuous spatial relationships. Common
to us, these works aim at learning indoor scene characteris-
tics from arrangements and interrelations of scene objects.
Nevertheless, their focus is on layout synthesis, while we fo-
cus on detecting objects functional mobility from the static
indoor scene arrangement.

3. Overview

Our input consists of large scale 3D indoor scenes, which are
typically man-made, as in Google 3D Warehouse. Our al-
gorithm initially over-segments the scene into homogeneous
patches denoted superpatches. In an indoor scene, objects
and their parts typically function as supporting and support-
ed. We compute a hierarchical segmentation of the scene in-
to object parts and subparts based on their support relations.
We formulate support relations as an energy function and
compute the scene segmentation using graph-cut. Given a
supporting part, we cluster together supported superpatches
which are directly connected in the mesh. The support tree
hierarchy is computed by recursively applying the segment–
cluster process, starting from the whole scene as the root
node down to parts and subparts. The result is a scene hi-
erarchy, referred to as a support tree, which encodes the
supporting–supported relations in the scene (Figure 3 (mid-
right)).

We compute the mobility by analyzing support relations and
reoccurrences of objects in the scene. Mobility defines the
degrees of freedom of an object in the scene. We label each
node in the tree as either no mobility, weak mobility, or hard
mobility. Weak mobility defines a general motion of objects
restricted by their supporting contact surface. Hard mobility
defines restricted motions along translational or rotational
axes (apples and chairs respectively in Figure 1).

Based on detected mobilities we define a set of high-level
controllers, which allow sophisticated scene manipulation
through a simple easy-to-use UI. In the editing step, the
user can select mobility controllers and modify the scene
by redistributing, aligning, reorganizing, positioning and de-
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Figure 3: Algorithm overview on a 3D cabinet scene. Left-to-right: input scene, segmentation into drawers and body, sup-
port tree consisting of one supporting node belonging to cabinet body and supported drawers, detected mobilities defined by
translational axes and limits.

forming multiple objects or subparts simultaneously (Fig-
ure 2(right)).

4. Technical details

In the following, we discuss in detail our support-based
segmentation, support-tree hierarchy, mobility detection and
scene manipulation.

4.1. Support-aware Segmentation

The input to our algorithm is a large scale indoor scene rep-
resented by unorganized boundary meshes. Our algorithm
does not assume any mesh properties, thus, the input mesh
may contain self intersections, non-manifoldness, topologi-
cal inconsistencies etc. Inspired by the utilization of super-
pixels for image segmentation [RM03], we initially over-
segment the input scene into a large number of homogeneous
superpatches. Starting from independent triangles, we group
adjacent triangles with similar orientation and shading (i.e.
color and material if available) within a ε-threshold into a
superpatch. We treat each superpatch as an unbreakable unit
in our segmentation.

We observe that objects in indoor scenes are commonly char-
acterized by supporting and supported interrelations (e.g.
table supporting lamp and supported by floor, pictures and
lights supported by wall and ceiling respectively). Our key
idea is to utilize the prevalent supporting-supported relation-
ships in the scene for meaningful object segmentation.

For each superpatch we compute its support energy with
respect to neighboring superpatches and apply graph-cut
[KZ04] to label superpatches into either supporting or sup-
ported, while minimizing an energy functional. We write su-
perpatch labeling as a minimization problem of the follow-

Figure 4: Support-tree decomposition of a 3D scene.

ing form:

E = ∑
p∈S

Up(lp)+λ ∑
p,q∈S

Vp,q(lp, lq),

where Up(lp) is the data cost for assigning label lp to super-
patch p, and Vp,q(lp, lq) is the smoothness term for balanc-
ing labels lp at p and lq at q. lp = 1 denotes that p has been
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assigned a supporting role, and lp = 0 indicates that p is
supported. The parameter λ controls the relative importance
between the data cost and smoothness terms.

Typically, a supporting superpatch p has the properties:

• is closer to its supported parts. If p is supporting q and
both are directly/indirectly supported by another part r,
then p is closer to q than r is. For example, in Figure 4,
the seat is closer to the armrests (supported by seat) than
the legs are (supporting both seat and armrests).

• is larger in size than the superpatches that it supports.

• supports more than one object, hence in contact with mul-
tiple superpatches.

Based on the above observations, we define the data cost
term as:

Up(1) = 0.4D(p)+0.3
1

A(p)
+0.3

1
N(p)

,

Up(0) = 1−Up(1),

where D(p) is the proximity term and measures the shortest
distance from p to a (previously labeled) supporting super-
patch; A(p) is the size term and measures the surface area
of p’s oriented bounding box (OBB); N(p) is the cardinality
term and counts the number of superpatches that are directly
connected to p, by searching for superpatches that overlap
with p’s OBB within a threshold.

The smoothness term is used to encourage superpatches to
be assigned with the same label if they are either geometri-
cally similar or spatially proximate. It is defined as:

Vp,q(0,1) = Vp,q(1,0)

= 0.4S(p,q)+0.3G(p,q)+0.3/C(p,q),

Vp,q(0,0) = Vp,q(1,1) = 1−Vp,q(0,1),

where S(p,q) is the similarity term and measures the differ-
ence between two parts in terms of their material and size.
Material similarity is computed by the difference between
their texture images. Size similarity is computed by length
ratios of the three PCA axes, where axes correspondence
is achieved by their size ordering. G(p,q) is the alignment
term and measures how well two superpatches are aligned.
We measure it by checking the overlapping percentage of
the two parts’ OBBs (e.g. a closed drawer aligned with its
supporting cabinet frame). C(p,q) is the connectivity term
and measures the shortest connecting path between p and
q, in terms of the number of superpatches in the shortest
geodesic path. When there is no path between p and q, we
set C(p,q) =∞. All six terms are normalized and we have
experimentally set the parameter λ = 4.

Once superpatches are labeled, it is common that multiple
parts are supported by he same supporting part. For exam-
ple, in Figure 4, the chair seat, armrests and back are al-
l supported by the legs. We group supported superpatches

Algorithm 1 Build the tree hierarchy for input node S
Label superpatches in S as supporting and supported;
Cluster together connected supported superpatches;
Create a node B to hold all supporting superpatches;
Create a node Di to hold ith cluster of supported superpatches;
Add B and {Di} as the children of S; see Fig. 6(b);
if S is a supporting node then

Find S’s parent node A;
Remove S from A’s children list;
Add B and {Di} into A’s children list;
for all A’s children {Tj} that S supports do

if Tj is solely supported by one of the subset Dk then
Create a node C that holds both Dk and Tj;
Remove Dk and Tj from A’s children list;
Add C to A’s children list;
Add Dk and Tj as the children of C; see Fig. 6(d);

end if
end for

end if
Apply Algorithm 1 recursively to build subtrees for B and {Di}.

into clusters based on their connectivity. That is, two super-
patches p and q are in the same cluster iff C(p,q) 6=∞ and
their connecting path passes only through supported super-
patches. The outcome is a segmentation where each support-
ing object supports one or more supported objects. In Figure
4 chairs are separated by the supporting floor thus denoted
by independent nodes in the tree. However, connected chair
parts are initially clustered as one supported part denoted by
a single node. In deeper levels in the tree, we recursively
segmented this cluster.

We enhance the segmentation process with user assistance,
to allow refinement of labels in scenes that do not fully com-
ply with the above supporting properties. We define two
types of manual scribbles for assistance: graph-cut relabel-
ing and cluster breaking. The relabeling scribble inverts the
label of a superpatch as assigned by graph-cut, whereas the
breaking scribble splits supported superpatches into separate
clusters.

4.2. Support Tree Hierarchy

The procedure discussed in Section 4.1 segments the scene S
into semantically meaningful objects. In this step, we com-
pute the support tree hierarchy by applying the segment-
cluster process in a recursive manner (Figure 4).

Starting with the whole scene, we create a root node R that
holds all the superpatches in the scene (Figure 4). We man-
ually detect typical dominant supporting parts in the indoor
scene as floors, walls and ceilings. Remaining superpatch-
es are inserted into the support tree as follows: we examine
superpatches clusters in R (Section 4.1) and at each lev-
el, create one tree node for the supporting part and one or
more tree nodes for each supported cluster, and add them
as children of R. Next, we recursively apply segment-cluster

c© 2013 The Author(s)
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Figure 5: Comparison between normal (a) and standardized
(b) support trees for an articulated lamp.

on each of the child nodes, further segmenting objects into
parts and subparts. We repeat node creation and tree inser-
tion for supporting and supported subparts within each child.
Support tree construction proceeds until unbreakable super-
patches are reached.

By construction, a support tree has the following properties
which need be maintained:

1. A node in the tree has two or more children, with exactly
one child being the supporting node and other siblings
being supported nodes;

2. A supporting node E supports all its siblings and hence,
if E moves in the scene, all superpatches in its siblings
move with it;

3. If a superpatch p is contained in node E, it is also
contained in all the ancestor nodes of E. The support-
ing/supported role of p in these nodes may be different.
For example, a table resides in a supporting node and sup-
ports books on the table, while at its parent level, the table
and the books reside in the same supported node which is
supported by the floor.

While the above recursive approach is simple and nicely en-
codes support interrelations in the tree, it cannot guarantee
identical tree structures for two instances of the same object.

Figure 6: Rearrangement scenarios of support tree: a) ini-
tial cut segments scene into a supporting and two supported
objects; b) no rearrangement needed after segmentation of
a supported object (red cut); c) and d) rearrangement when
the supporting object is segmented.

This is because the support tree construct depends on seg-
mentation order (Figure 5(a)). To achieve a consistent hier-
archy, we introduce the notion of standardized support tree.
The additional constraint of a standardized version is that
all supporting nodes must be leaf nodes (Figure 5(b)). To
generate a standardized support tree, we use additional re-
arrangement steps to move supporting nodes into the leaves
(See Algorithm 1 and Figure 6). Thus, two articulated ob-
jects with identical parts will yield identical trees.

4.3. Mobility Detection

In this step, we automatically extract objects mobilities from
the standardized support tree. We consider two types of mo-
bilities: weak mobility and hard mobility, the former allows
an object to translate and rotate as long as it remains in con-
tact with its supporting surface (e.g. chairs moving around
on the floor), whereas the later allows an object to translate
or rotate along specific axes and within some limits (e.g.
drawers translating in and out of cabinets, doors rotating
around their doorposts).

To automatically detect hard mobility, we utilize the fac-
t that objects and parts reoccur in the scene with different
poses and orientations. Based on this observation, we search
for repetitive objects and parts in the scene. Two objects pi
and p j are considered repetitive instances if there is a per-
fect matching between their standardized support trees and
between their mesh parts at leaf level. For example,the two

c© 2013 The Author(s)
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Figure 7: Mobility extraction, top: translational (armrest,
drawer), bottom: rotational (door, book). Support parts may
share the same support qi (drawers,books), or different sup-
porting parts qi,q j (armrests, doors).

lamps in Figure 5 has the same (standardized) tree hierar-
chies and consist of four mesh parts. For computational effi-
ciency, we first compare tree hierarchies, and only if identi-
cal we compare shape similarity at leaf level. Parts’ similar-
ity is measured using S(p,q) at leaf objects. In our example,
lamp parts match exactly, thus lamps are considered repeti-
tive instances with different poses.

We restrict our mobility detection to piece-wise rigid trans-
formations. This does not pose a limitation since indoor
scenes objects are commonly man-made and composed of
rigid body functional parts. A translation transformation is
defined by translation direction, origin and min/max trans-
lational offsets. Similarly, a rotation transformation (repre-
sented by quaternions) is defined by rotation axis, reference
direction, and min/max rotation angles (Figure 2).

We detect the mobility of repetitive parts, say {pi, . . . , p j}
w.r.t. their supporting part {qi, . . . ,q j}. Note that repeating
parts may have the same or different supports. For example
in Figure 7, drawers are supported by one cabinet body while
doors are supported by different door frames. If the support-
ing nodes are different, i.e. qi 6= q j, we align all PCA axes of
{qi, . . . ,q j} with qi’s PCA axes denoted (xqi ,yqi ,zqi). Axes
correspondence is achieved by ordering axes by size.

To detect translational mobility we map all centroids

{cpi , . . . ,cp j} to the common qi’s axes. We check w.r.t.
to each axis, e.g. xqi if the projected centroids {cpi �
xqi , . . . ,cp j�xqi} form a line (� denotes dot product). Then,
we define this as a translational mobility moving along xqi .
The min and max offsets can be easily computed by exam-
ining the projection extremes w.r.t. the origin, which we set
as the center of xqi (Figure 7 (top)).

To detect rotational mobility, we consider the PCA axes of
pi and map them to the common qi’s PCA axes denoted
vi = (xpi ,ypi ,zpi), . . . ,v j = (xp j ,yp j ,zp j ) (axes are matched
by size). For each PCA axis, if all vectors, e.g. xpi , . . . ,xp j

are on the same plane, we define the rotation axis as the nor-
mal to this plane. The min/max angle limits are computed
from the angles between vectors in the plane and one ref-
erence vector(Figure 7 (bottom)). If vectors are not on the
same plane, it means objects rotate along more than one ax-
is. In this case, we assume objects to be rotational symmetric
around the dominant PCA axis, and simply take the other t-
wo PCA axes as the rotational mobility axes.

For supported parts without hard mobilities we detect weak
mobilities instead. We use the assumption that an object can
move along its supporting surface. Once an object has weak
mobility, we compute the normal of its supporting surface
and use it as an arbitrary rotational axis. The two directions
that are orthogonal to the normal serve as the 2D translation-
al axes. Together, they allow the object to translate and rotate
along the supporting surface. A node that has neither hard
nor weak mobility is considered not movable with respect to
its supporting node. Embedding the detected mobilities in-
to the standardized support tree generates the mobility-tree,
which provides a high-level functional representation of a
complex indoor scene.

4.4. Mobility Controllers (UI)

We utilize the detected mobilities for high-level editing con-
trols of large scale scenes. Repetitive parts in the scene form
groups which allow simultaneous editing operations utiliz-
ing their mobilities. Thus, we develop several group-controls
and part controls as follows:

• Alignment: the user selects a group of repetitive object-
s simply by selecting one of its members. A click on the
alignment button aligns all the objects in the group. If the
group has translational mobility, objects in the group will
translate to the min offset line. Similarly, in case of rota-
tional mobility, objects will align with the circle around
the rotation axis. In Figure 1, pears on the table and chairs
around the table align using translational and rotational
mobilities respectively.

• Regularization: the user selects a group and clicks the
regularization button. In case of translational mobility, ob-
jects in the group are translated to regular intervals with-
in the translational limits. Similarly, in case of rotational

c© 2013 The Author(s)
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Figure 8: In a bookshelf (left) we detect translational and rotational book mobilities (mid-left). Applying mobility controllers,
we get various bookshelf reorganizations: piled (center), aligned and uniformly distributed (mid-right) and randomized (right).

mobility, objects are rotated around their rotation axis to
a regular angular interval (Figure 8).

• Randomization: In contrast to regularization, objects
within a group are repositioned following their group mo-
bility at random intervals within the mobility limits.

• Deformation: the user selects a single object and moves
it according to its mobility and limits simply by moving
the mouse left-to-right in a 1D manner.

The generation of global object transformations from local
editing operations is not trivial. E.g., it is not obvious when
rotating an office chair’s seat, what should be the leg wheels
movement? We use our support tree to solve these problems.
As the user edits a part, we first search for the leaf node L
in the mobility-tree that contains the part. If L is a support-
ing node (or a supported node with no mobility), we trace its
ancestor until we find a movable supported node E. Based
on the mobility information stored at E, relevant controllers
pop, and the user can select a controller to move the corre-
sponding object of E within its mobility limits. All children
of E shall move with E together. Thus, if we rotate the seat
of an office chair, only the back and armrest move while legs
stay intact (Figure 4);

5. Results and Applications

We tested our algorithm on various indoor scenes originat-
ing from range scans, manually modeled and the web. All
our scenes are represented by arbitrary meshes without mak-
ing any geometrical or topological assumptions. On average
scene sizes are 100K polygons (see Table 2). We run all our
results on a 2.4Ghz dual core CPU with 4GB RAM. Our pro-
cessing times are as follows: automatic over-segmentation
into superpatches was 20 secs on average. In the interactive
step, the user analyzes and detects incorrect segmentation
and labeling, and manually corrects and refines it. Interac-
tion was 4 mins on average (8 mins max), and the user pro-
vided 4 scribbles on average. Mobility computation took 10
secs on average (30 secs max). The ε-threshold for triangle
similarity in the superpatch growing is set to 1.0 for most

Figure 9: Functional mobility detection and manipulation
of outdoor scenes.

scenes (i.e. if the distance between two patches is smaller
than this, they are connected). Nevertheless, in the scanned
scenes in Figure 11 we set the value to 0.1 due to extensive
noise.

Figure 8 demonstrates a comprehensive result on a relative-
ly simple input. Books have both rotational and translation-
al mobilities with respect to the supporting shelf, thus al-
lowing a high degree of control for reorganizing the scene.
Through manipulating mobility controllers, users can rotate
or translate books either individually or collectively, to lay
them down, pile them up, or distribute them regularly or ran-
domly.

Our algorithm is also applicable to general scenes (non-
indoor), as long as repetitive objects exist. In Figure 9, we
demonstrate mobility extraction in two outdoor scenes. We
apply our algorithm in a straight forward manner detecting
and analyzing repetitive object parts and subparts. Our al-
gorithm was able to accurately compute mobility controllers
for reorganizing and aligning these scenes.

We have tested our method on complex indoor scenes down-
loaded from Google Warehouse consisting of multiple ob-
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Figure 10: We compute mobilities in complex indoor scenes (left column). Using computed controllers (green arrows), we can
simultaneously align and regularize objects, allowing easy manipulation of the scenes (right column).
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Figure 11: Three scene models reconstructed from raw scans (left). We detect mobilities (middle) and reorganize the scenes
using our algorithm (right).

jects and parts of various types. In Figure 10, we show re-
sults on various scenes. The left column shows the scene
with detected mobility controls, the right shows the reorga-
nized scene by simultaneously aligning and distributing ob-
jects by their detected functional mobility. We show weak
rotational mobility for cupboard door and chairs (top row),
and weak translational mobility for telephone (2nd row from
top). Hard translational mobilities are shown for curtains and
drawers (mid row); rotational for pictures, computer screens
and lamp joints (2nd row from bottom).

In Figure 11, we demonstrate a possible extension of our
algorithm to reconstructed scanned scenes. We reconstruct
three scanned indoor scenes (left, middle) and rapidly reor-
ganize them using detected mobilities.

Figure 12 shows the result of our mobility computation and
manipulation on a non-indoor scene of repeating cars. We

extract several rotational mobilities for wipers, wheels and
doors as well as translational mobilities in the sunroof. Note
that since both front and back wheels are identical, they are
grouped in the same mobility group, resulting in an unnatu-
ral rotation of the back wheels.

To detect all mobilities, we need object repetitions with suf-
ficient pose variations. In Figure 13 we test our algorithm
on a very complex robot arm with many rotational joints and
degrees of freedom. The mobilities of the hand (red axes in
zoom in) were detected only after adding the two rightmost
arm variations.

In Table 1, we show a user study comparing between scene
manipulation with and without using our mobility controller-
s. We have asked a group of 10 end-users, artists and CG
researches to reorganize and manipulate 5 input scenes (Fig-
ure 10 left) that were segmented into individual objects in a

c© 2013 The Author(s)
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Figure 12: Mobility extraction from repeating cars in a parking lot (top row). Middle, bottom rows show simultaneous mobility
editing of car parts.

Figure 13: Complex rotational mobilities are progressively extracted from repetitions of a robot-arm.

preprocessing step. In our study, users were presented with
the target organized scene (Figure 10 right) and were asked
to manipulate their input to reach this goal. The required ma-
nipulation consisted of alignment, regularization and defor-
mation of objects in the scene. Each scene was manipulat-
ed twice, with and without using our mobility controllers.
Without mobility controllers, the user manually selects indi-
vidual objects in the scene, and translates and rotates them
around with the mouse. Interaction timings (columns 3 and
4) show more than an order of magnitude difference between
mobility-based and manual editing. Column 2 shows prepro-
cessing timings of our mobility tree computation.

Table 2 summarizes our results in detail. For each result, we
specify its origin whether made by a modeler, downloaded
from Google sketchup or reconstructed from a raw scan of
a real 3D scene. Next are the number of objects and sub-

parts in each scene and the number of detected mobilities.
The rightmost column describes each of these mobilities by
the part name, and number of its repetitions in the scene,
followed by mobility type (translational, rotational, weak).

Limitations Our mobility-tree construct is based on two
major observations: the existence of supporting–supported
relations between objects and pose variations of repetitive
objects. If these assumption do not hold, our algorithm will
not compute the correct mobilities. For example, repetitive
objects having exactly the same pose (e.g. all drawers are
closed), will not have any mobility. On the other hand, objec-
t variations may be unnatural resulting in incorrect mobility
(in Figure 12, back wheels). In such cases, a possible work-
around is to manually introduce and adjust pose variations
by editing the scene before applying our technique.

c© 2013 The Author(s)
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Fig Source #Parts #Controls Controllers Mobility
1 Modeler 74 7 C1: 5 X apple (translate) (weak) C2: 5 X pear (translate) (weak) C3:

7 X book (rotate) C4: 2 X lamp (top) (rotate) C5: 2 X lamp (bottom)
(rotate) C6: 6 X chair (translate) (weak) C7: 6 X drawer (translate)

2 Modeler 131 6 C1: 25 X wheel (rotate) C2: 5 X seat (rotate) C3: 5 X seat (translate)
C4: 5 X back (rotate) C5: 5 X arm(top) (translate) C6: 5 X arm(bottom)
(translate)

3 Modeler 13 1 C1: drawer X 10 (translate)
9(a) Modeler 22 5 C1: 2 X cantilever (rotate) C2: 2 X elevator (translate) C3: 2 X bull-

dozer (top) (rotate) C4: 2 X bulldozer (mid) (rotate) C5: 2 X bulldozer
(bottom) (rotate)

9(b) Modeler 30 5 C1: 2 X sliding boat (green) (translate) C2: 2 X sliding boat (yellow)
(translate) C3: 2 X mega drop (translate) C4: 3 X roller (rotate) C5: 2 X
pirate ship (rotate)

10(a) Sketchup 144 10 C1: 2 X pillow (rotate) C2: 2 X lampshades (translate) C3: 2 X cur-
tains (translate) C4: 24 X book (rotate) C5: 2 X door (rotate) C6: 6 X
drawer(long) (translate) C7: 3 X drawer(short) (translate) C8: 5 X apple
(translate) (weak) C9: 4 X pear (translate) (weak) C10: 5 X cup (trans-
late) (weak)

10(b) Sketchup 130 5 C1: 6 X droplight (translate) C2: 8 X drawer (bedside table) (translate)
C3: 5 X drawer (translate) C4: 1 X disk (translate&rotate) (weak) C5: 1
X telephone (translate&rotate) (weak)

10(c) Sketchup 170 7 C1: 4 X curtain (translate) C2: 4 X drawer (translate) C3: 2 X picture
(rotate) C4: 3 X screen (rotate) C5: 2 X lamp (top) (rotate) C6: 2 X lamp
(middle) (rotate) C7: 2 X lamp (base) (rotate)

10(d) Sketchup 338 7 C1: 8 X book (rotate) C2: 2 X book-group(a) (translate) C3: 2 X book-
group(b) (rotate) C4: 2 X book-group(c) (translate) C5: 2 X book-
group(d) (rotate) C6: 5 X book (gray) (rotate) C7: 12 X drawer (trans-
late)

10(e) Sketchup 203 6 C1: 4 X drawer (short) (translate) C2: 8 X drawer (long) (translate) C3:
2 X door (long) (rotate) C4: 4 X door (short) (rotate) C5: 4 X drawer
(bedside table) (translate) C6: 3 X picture (translate)

11(a) Raw scan 7 1 C1: 6 X chair rotate) (weak)
11(b) Raw scan 12 2 C1: 6 X chair (translate&rotate) (weak) C2: 3 X chair (translate) (weak)
11(c) Raw scan 13 3 C1: 3 X chair (translate) (weak) C2: 4 X cup (translate)(weak) C3: 5 X

box (translate)(weak)
12 Modeler 192 5 C1: 20 X door (front) (rotate) C2: 20 X door (back) (rotate) C3: 20

X wiper blades (rotate) C4: 10 X sunroof (translate) C5: 40 X wheel
(rotate)

13 Modeler 137 6 C1: 8 X arm(1) (rotate) C2: 8 X arm(2) (rotate) C3: 8 X arm(3) (2D-
rotate) C4: 8 X hand (3D-rotate) C5: 40 X finger(1) (rotate) C6: 40 X
finger(2) (rotate)

Table 2: Summary of mobility results

c© 2013 The Author(s)
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Fig Preprocessing Mobility
Editing

Manual
Editing

1 91s 13s 519s
2 100s 9s 485s
8 30s 5s 299s
10(a) 95s 15s 613s
10(b) 63s 5s 451s
10(c) 83s 7s 536s
10(d) 114s 6s 448s
10(e) 97s 5s 513s
12 117s 7s 565s
13 90s 6s 639s

Table 1: Mobility editing vs. manual editing user study

6. Discussion and future work

We present an algorithm for detecting and manipulating
functional mobilities in a static indoor scene. To achieve our
goal, we analyze the support relationship among objects and
detect their repetitions. Based on pose variation of repetitive
objects, we are capable of detecting translational and rota-
tional mobilities, and analyze the corresponding axes and
limits of motions. We can also infer the mobilities of objects
along their respective supporting surfaces. Finally, we inte-
grate mobility information into a hierarchical representation
and generate high-level controllers for scene editing.

In the future we plan to incorporate additional object rela-
tions, such as symmetry, dependency and regularity, into the
mobility detection, as well as design additional high-level UI
controllers. We would also like to pursue the idea of func-
tional mobilities for scene understanding.
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