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Figure 1: Our robot-based, Poisson-guided autoscanner can progressively, adaptively, and fully automatically generate complete, high
quality, and high fidelity scan models.

Abstract

We present a quality-driven, Poisson-guided autonomous scanning
method. Unlike previous scan planning techniques, we do not aim
to minimize the number of scans needed to cover the object’s sur-
face, but rather to ensure the high quality scanning of the model.
This goal is achieved by placing the scanner at strategically select-
ed Next-Best-Views (NBVs) to ensure progressively capturing the
geometric details of the object, until both completeness and high
fidelity are reached. The technique is based on the analysis of a
Poisson field and its geometric relation with an input scan. We
generate a confidence map that reflects the quality/fidelity of the
estimated Poisson iso-surface. The confidence map guides the gen-
eration of a viewing vector field, which is then used for computing
a set of NBVs. We applied the algorithm on two different robotic
platforms, a PR2 mobile robot and a one-arm industry robot. We
demonstrated the advantages of our method through a number of
autonomous high quality scannings of complex physical objects, as
well as performance comparisons against state-of-the-art methods.
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1 Introduction

Scanning real physical objects is becoming more and more com-
monplace, which stimulates much research on accurate shape re-
construction from raw scanned data [Berger et al. 2014]. One of the
main data capturing challenges via laser scanning is to fully cover
the entire surface of an object with a defined accuracy. The cov-
erage problem is difficult to solve due to physical occlusions, less
than ideal material properties or potentially imprecise movement of
the scanner [Tagliasacchi et al. 2009; Mullen et al. 2010; Huang
et al. 2013]. Efficiently obtaining a complete surface requires a
good planning based on a priori knowledge of the scanned object.
When the shape is unknown, for instance in a robot-operated set-
ting, an autonomous scanner can be strongly assisted by an on-the-
fly geometric analysis of the acquired data to guide the completion
of the full coverage [Scott et al. 2003].

Obtaining guidance on where to position the sensor next in order
to increase the information gain is known as the Next-Best-View
(NBV) planning problem, first proposed by Connolly [1985]. As
we shall elaborate in the next section, the common approach to the
NBV problem is to analyze the temporal boundaries of the patch-
es reconstructed from the partial scan, aiming to complete the sur-
face. Alternatively, the partial scan can be analyzed by consider-
ing a global watertight reconstruction and its ambient space. This
approach requires a non-trivial analysis of a 3D point cloud of an
unknown shape. In [Pauly et al. 2004], measures of uncertainty
and variability of a given point cloud surface are presented. Their
analysis mainly focus on density, regularity and curvature. Such
measures may form an estimate about where more scans are need-
ed to improve the quality of the current data. However, their anal-
ysis does not account for geometric completeness and topological
aspects, and in particular holes or occluded regions that need to be
covered by additional scans.

In this paper, we introduce a method for point cloud analysis that
accounts for both completeness and quality of the reconstruction.
Unlike previous scan planning methods, we do not aim at minimiz-
ing the number of scans needed to cover the whole surface. In-
stead our objective is to ensure high fidelity scanning of the model.
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Figure 2: Autoscanning overview: given an incomplete point cloud (b) obtained by a blind scanning of an unknown object (a), we first
reconstruct a Poisson iso-surface and estimate its confidence map (c), where high confidence areas are shown in red and low confidence in
blue. A 3D viewing vector field (VVF) is then generated to determine a set of next-best-views (NBVs). A slice of the VVF is visualized in
(d), where black arrows show the NBVs. Scanning from these NBVs captures more points (red in (e)) in low confidence areas. The scanning
process is iterated until convergence to a high quality reconstruction (f).

The core idea is to validate and assess a watertight surface recon-
structed from a Screened Poisson equation [Kazhdan and Hoppe
2013], which leads to a confidence map defined on an estimated
iso-surface. We then build an ambient viewing field, which sug-
gests us a set of NBVs with five degrees of freedom for covering
low confidence areas on the iso-surface. By positioning the scanner
at the suggested NBVs, the surface of the input object is progres-
sively scanned at high fidelity.

We have implemented and experimented our autoscanning tech-
nique on two types of robots. One is a mobile robot PR2 from
Willow Garage (Figure 1) and the other is a one-arm industry robot
from Reis Robotics (model RV20-6, see Figure 10). Using these
two robotic platforms we tested our algorithm on a number of re-
al and complex objects with initially unknown shapes. To com-
pare our method with state-of-the-art NBV techniques we perform
a qualitative comparison on a real object and a quantitative evalua-
tion on a virtual model; see Figures 11, 9 and 12.

2 Related work

Autoscanning of a scene or an object is a challenging view plan-
ning problem since in many cases a priori knowledge of the object
or scene geometry is unavailable. Typically, planning is computed
on-the-fly and based on the information collected so far from pre-
vious scans. Computing the potentially best view for the next scan
is called the Next-Best-View (NBV) problem. It has been studied
since 1980s [Connolly 1985], but still remains active. The prob-
lem is known to be NP-hard; however, it can be reduced to the well
studied coverage problem that can be solved efficiently [Low and
Lastra 2006; Chen et al. 2011].

Acquiring and reconstructing of indoor/outdoor scenes as well as
navigating in such environments pose fundamental problems for au-
tonomous robotics system [Low and Lastra 2006; Blaer and Allen
2007; Chen et al. 2011; Zhou and Koltun 2013]. KinectFusion
based systems [Newcombe et al. 2011; Chen et al. 2013] recent-
ly gained popularity for real-time dense surface mapping, tracking,
and reconstruction with mobile low-cost depth cameras. Kim et
al. [2013] presents a guided real-time scene scanning interface in
which the user receives interactive feedback based on 3D shape re-
trieval operations supported by a model repository. The work focus-
es on the coverage and exploration of scenes at a coarse level. Li
et al. [2013] presents a system to allow users scanning themselves

with a single Kinect by rotating in the same pose for a few differ-
ent views, this allows the scanner to cover the full body. Howev-
er, scanning and registration in this case highly depends on having
the human body shape as a prior. Some NBV techniques [Wen-
hardt et al. 2007; Dunn and Frahm 2009] build 3D models from
images, based on camera movements and on utilizing the model’s
covariance structure as well as texture appearance. In our work, we
instead aim at high fidelity 3D scanning of unknown objects that al-
low automatic reconstruction of objects with rich geometric details
and a complex topology.

For scanning of single objects, Scott et al. [2003] classify the relat-
ed NBV algorithms into two main categories: model-based [Trucco
et al. 1997] and non-model-based methods. The challenge of the
latter case, i.e., automatically finding NBVs for unknown objects,
has been widely studied in the robotics literature [Chen et al. 2011].
The pioneer works are occlusion-guided methods [Maver and Bajc-
sy 1993; Pito 1996] or based on a volumetric analysis [Banta et al.
2000; Vásquez-Gómez et al. 2009]. However, these techniques re-
strict the search space for the NBV onto a sphere or a generalized
cylinder. Such simplification helps to reduce the computation cost
but limits the precision, thus level of fidelity, when scanning scan-
ning complex, self-occluded, or feature-rich objects.

A number of surface-based NBV algorithms have been recently
proposed [Khalfaoui et al. 2013; Kriegel et al. 2013], which deter-
mine NBVs by analyzing the shape of the so-far scanned surface.
In general, these techniques detect visibility limitations or open
boundaries and guide the scanner to cover the surface accordingly.
While these approaches produce complete scans for the input ob-
jects, they do not guarantee that the reconstruction captures all ge-
ometric details on the surfaces of the objects. For example, Kriegel
et al. [2013] reconstruct a partial surface first and then determine
successive NBVs solely based on holes or boundaries on the sur-
face. This implicitly assumes that the areas already been scanned
are of sufficient quality, which may not be true in many practical
cases. In comparison, our approach assesses both the completeness
and the local smoothness of the reconstructed surface, which results
in high-fidelity scan models.

For point cloud assessment, our work is closely related to Pauly
et al. [2004], which present uncertainty and variability analysis of
point-sampled geometry. They introduce a statistical representation
for each point in space. It quantifies the likelihood that a surface
obtained by least-square data fitting passes through that point. This



(a) Incomplete point cloud. (b) Complete point cloud. (c) Poisson field of (a). (d) Poisson field of (b).

Figure 3: Visualization of the Poisson scalar fields for incomplete and complete point clouds. In areas with missing data the field is blurry,
i.e., it has a low gradient.

likelihood map is combined with a corresponding confidence map
that measures the quality of local normal estimations. In our work,
we also investigate raw point clouds. However, we measure not
only existing points, but also the predicted points from a Poisson
field, and use such measurement to the acquisition of new points.
This is conducted in an iterative process, through selecting next best
scans and integrating new scans.

In a broader context, our work is also related to many recent pub-
lications on surface reconstruction from point cloud. The most no-
table works are methods for reconstructing watertight surface mod-
els [Wheeler et al. 1998; Carr et al. 2001; Kazhdan et al. 2006;
Kazhdan and Hoppe 2013]. Other related works deal with the con-
solidation of raw point data [Lipman et al. 2007; Huang et al. 2009],
surface completion [Davis et al. 2002; Sharf et al. 2004; Sagawa
and Ikeuchi 2008; Tagliasacchi et al. 2009; Harary et al. 2014;
Huang et al. 2013] or differentiating real holes from incomplete
scanning data [Seversky and Yin 2012].

3 Overview

The core of our autonomous scanning system consists of an analy-
sis of the data acquired by a scanner and the generation of a set of
NBVs for the scanning robot. We evaluate the quality of a global,
complete iso-surface model extracted from a Poisson field, rather
than only analyzing existing points close to open boundaries. The
evaluation is based on a confidence map, which is generated by
assigning each surface sample a confidence score that reflects its
measured quality; see Figure 2(c). The confidence measure is de-
rived from two criteria: one measures the directional gradients of
the Poisson field in the vicinity of the iso-surface and assesses the
stability of the local topology. The other criterion analyzes to what
extent the available scans support the extracted iso-surface.

Once the confidence map is computed on the iso-surface, we de-
fine a 3D viewing vector field (Figure 2(d)). The magnitude of the
vectors reflect their potential for being the next scanning locations,
and their directions suggest a rough scan orientation. A sparse set
of positions having local maxima of vector magnitudes is then se-
lected to form a set of NBVs for the next scanning iteration. For
each selected position, its optimal scanning direction is computed.
According to the current position of the robot arm, these NBVs are
ordered into a sequence for the next scan path (Figure 2(e)).

Figure 2 illustrates the scanning pipeline, which starts with a blind,
all-around scanning of the object and iteratively refines the model
by additional scans from automatically selected NBVs. The itera-
tive process continues until a high-quality model is obtained or the
reconstruction cannot be further improved.

4 Iso-surface estimation and measurement

Given an object with unknown shape, blind scanning around the
object give us an initial point cloud Q = {qj}j∈J ⊂ R3, e.g., in
Figure 2(b). Our first goal is to reconstruct a tentative, watertight
surface model from Q and estimate its reconstruction quality.

4.1 Point consolidation and Poisson reconstruction

Depending on the quality of the scanner, the initial raw point cloud
may be corrupted due to noise and outliers, and may not be e-
quipped with reliable normals. In this case, we apply a point cloud
consolidation preprocessing step (includes noise filtering, outliers
removal, normal estimation, and thinning), which facilitates the es-
timation of a robust iso-surface. Here a Weighted Locally Optimal
Projection operator [Huang et al. 2009] is employed, which output-
s a cleaned and oriented point set P = {(pi,ni)}i∈I ⊂ R6 that
adheres faithfully to the underlying shape.

Having a consolidated point set P , we are able to generate a ten-
tative model for the object using the so-called Screened Poisson
surface reconstruction method [Kazhdan et al. 2006; Kazhdan and
Hoppe 2013]. This approach interprets an inward pointing normal
field of a surface as the gradient of its solid indicator function. Thus,
a surface can be obtained by transforming the oriented points into
a continuous vector field in 3D, and then extracting the appropriate
iso-surface from an indicator function whose gradients best match
the vector field (see Figure 3(c) and (d)). The resulting model is wa-
tertight and of high quality if the underlying points are dense and
accurate enough. However, if there are areas with missing data or
being insufficiently sampled, the reconstructed Poisson surface may
contain topological errors and/or miss geometry details. Hence, our
goal is to automatically identify these areas and apply additional s-
cans so that the Poisson iso-surface extracted accordingly can be
used to accurately reconstruct the surface of a real object.



(a) A synthetic model. (b) One scan with f0
s . (c) Five scans with f5

s . (d) Ten scans with f10
s .

Figure 4: Visualization of smoothness confidence scores fs. The synthetic input model (a) is designed to contain a spatially-varying geometric
details. The extracted Poisson iso-surface by a single scan (b) does not accurately represent the input model and the confidence scores
properly identify the problematic areas. Adding more scans (c and d), the confidence scores increase (from blue to red) and converge after
all details are captured and reconstructed well.

(a) Artwork. (b) Q0. (c) f0
g . (d) f0

s . (e) Q4. (f) f4
g . (g) f4

s .

Figure 5: Given a synthetic input model (a), the point cloud obtained from the initial blind scanning is shown in (b) and the corresponding
surface reconstructed is shown in (c-d), where the completeness (fg) and smoothness (fs) confidence scores are mapped, respectively. The
surface reconstructed after 4 scanning iterations (e) is shown in (f-g) with confidence scores being mapped in the same order.

4.2 Quality assessment on a Poisson iso-surface

To evaluate the quality of the obtained Poisson iso-surface, we first
discretize it into a set of oriented points, S = {(sk,nk)}k∈K ⊂
R6, using Poisson-disk sampling [Corsini et al. 2012]. These points
are regularly distributed on the iso-surface and hereafter we refer to
them as iso-points. Two criteria are used in our approach for eval-
uating how well these iso-points approximate the true underlying
surface of the input object. Firstly, we measure our confidence in
the locations of the iso-points, which reside at the zero-crossings
of the Poisson scalar field. If this scalar field varies too slowly, we
cannot precisely locate the zero-crossings, which is an important
indicator that more scans are needed. Moreover, reliable iso-points
should be supported by a sufficient number of raw scan samples.
Hence, for a given iso-point sk, we locate the nearby points fromQ
and evaluate how consistent their locations are with respect to sk.

The first criterion is based on the observation that Poisson surface
reconstruction highly relies on the density and smoothness of the
underlying points. The denser and smoother the input points are,
the more rapidly the scalar field varies, and the closer the iso-points
are to their exact locations on the surface. In areas with missing data
the Poisson scalar field is blurry and the extracted iso-points are
unreliable; see Figure 3. Accordingly, we define the completeness
confidence score fg(sk,nk) for iso-point sk as

fg(sk,nk) = Γ(sk) · nk, (1)

where Γ(sk) is the gradient of the scalar field at location sk. It is
worth noting that Γ is calculated during the Poisson reconstruction
process and hence no additional computation is needed.

The second criterion directly evaluates a given iso-point sk using
the raw input points. Here we locate all raw points {qj}j∈Ωk in the
K-nearest neighborhood Ωk of sk. Theoretically, a large value of
this parameter K leads to a smooth confidence map, while a small
value may emphasize more the fine scale features. In practice, we
find that this parameter does not have big effect on results. It is set
to 100 (a relatively small value) throughout our experiments.

We then compute the smoothness confidence score fs(sk,nk) for
iso-point sk using the following bilateral weighted sum:

fs(sk,nk) =
∑
j∈Ωk

θ(‖sk − qj‖)φ(nk, qj − sk), (2)

θ(‖sk − qj‖) = e−‖sk−qj‖
2/(hk/2)2 ,

φ(nk, qj − sk) = e−‖n
>
k (qj−sk)‖2/(hk/4)2 ,

where ‖ · ‖ is the `2-norm. The spatial weighting function θ(‖sk −
qj‖) rapidly decays with the support radius hk = maxj∈Ωk{‖sk−
qj‖}; φ(nk, qj−sk) is the orthogonal weighting function that mea-
sures how distant the Knn points are to the tangent plane at iso-point
sk along an orthogonal direction.

By definition, a high value of fs indicates that the region is locally
smooth and the scan quality is high, i.e., the raw scan points in Ωk
form a thin plate. A low fs value, on the other hand, suggests that
either the scan is noisy or the surface contains rich geometric details
and thus more scans are needed. Figure 4 visualizes the fs values
calculated for areas with different levels of geometric details and
after different numbers of scans. It shows that areas that require



additional scans are properly identified.

Figure 5 confirms that the two confidence scores fg and fs mea-
sure reconstruction quality from different perspectives. Right after
the initial blind scans, there are areas that are considered smooth
enough (i.e., with high fs values in Figure 5(d)), but incomplete
since they are close to holes or open boundaries. After four scan
iterations, the model is mostly complete (i.e., with high fg values
in Figure 5(f)), but the low fs values in areas with rich geometric
details still demand additional scans. The final confidence scores
are calculated using the product of these two indicators,

f(sk) = fg(sk, nk)fs(sk, nk), (3)

which has high values only at areas that are both complete and lo-
cally smooth. As a result, our approach not only suggests NBVs
based on large areas of missing data, but also on the amount of
surface details to be captured in order to meet given quality criteria.

5 Next-Best-Views (NBVs)

Having analyzed the Poisson surface and assigned confidence to
each of its points, our next task is to determine good locations and
orientations to place the scanners for future capturing, a.k.a. the
NBVs. To efficiently plan the movement of the scanning robot,
we select multiple NBVs for each scan iteration and use them to
determine the next motion path of the robot, avoiding unnecessary
back and forth motion. The selection of NBVs are guided by a
viewing vector field (VVF), where the magnitude of each vector in
the field indicates how suitable the corresponding location can serve
as the NBV, and the vector direction suggests a scan orientation; see
Figure 6 for a 2D illustration of the NBV algorithm.

5.1 Viewing vector field (VVF) generation

All scanners have their optimal working distance range [dn, df ]
from near to far. We cannot place a scanner too close to the sur-
face, nor too far away. Based on the furthest working distance df ,
we select a bounding box B, which contains all points in the s-
pace whose distance to the closest point on the surface is smaller
or equal to df . In particular, the Z-direction of B is constrained
to be the vertical. To determine the X-Y directions, we project the
already acquired 3D points onto the horizontal plane and compute
the two principle axes. The space inside the bounding box is then
our searching space for the NBVs. We quantize the space B into a
3D voxel grid (100 × 100 × 100 by default). The NBV scores are
only evaluated at the centers of the voxels that are not occupied by
the scanned object. For each empty voxel vi, we cast a ray through
each iso-point sk to test their visibilities.

To evaluate the suitability of a given location vi in B for serving as
a viewpoint in the next scan, we compute a NBV score g(vi) using:

g(vi) = max
sk
{w(vi, sk)(1− f(sk))}, (4)

where f(sk) is the aforementioned confidence score for a given iso-
point sk and normalized to the range [0, 1]. The weight w(vi, sk)
between sk and the candidate location vi is computed as a product
of three terms: a distance-based term wd, an orientation-based term
wo, and a visibility-based term wv . That is:

w(vi, sk) = wd(sk, vi)wo(sk, vi)wv(sk, vi),

wd(sk, vi) = e−(‖vi−sk‖−do)2/(dn/4)2 ,

wo(sk, vi) = e−(1+n>
k d(vi,sk))2/(1−cos(σ))2 ,

wv(sk, vi) =

{
1 if sk is visible from vi,

0 otherwise,

(a) Iso-surface. (b) Local maxima.

(c) Non-adjacent maxima. (d) Next-best-views.

Figure 6: A 2D illustration for our NBV selection algorithm. The
input shape is blindly scanned from four locations, yielding the ini-
tial point cloud with its confidence evaluated (a). The magnitude
of the corresponding viewing vector field is visualized in (b-d). The
field is first partitioned into a grid of cells and the maximal mag-
nitude location within each cell is computed (b). The non-adjacent
locations with large enough magnitudes are then selected as the s-
canner’s view positions (c). Finally the scanner’s view directions
are determined by optimizing the coverage of both low confident
and high confident iso-points for accurate registration between the
new and the existing scans (d).

where the scanner optimal working distance do = (dn + df )/2.
The normalized vector d(vi, sk) = (vi − sk)/‖vi − sk‖ denotes
the direction that points from sk to vi. The parameter σ is set to
25o by default. Intuitively, the score function g(vi) has high values
when there is a low confident iso-point sk that is facing vi, visible
from vi, and whose distance to vi is within the optimal distance
range for scanning. Once the iso-point sk that maximizes g(vi) is
found, the score value g(vi) is stored together with the direction
d(vi, sk). Computing the best sk for all the voxels in B yields the
viewing vector field (VVF); see Figure 6(b) for an illustration on
the magnitudes of the vectors.

5.2 Field-guided view selection

Our next task is to select a set of view positions and directions for
the next round of scanning. We start by picking locations that have
local maximal magnitudes in the VVF and use them as the scanner’s
view positions. The field is partitioned into a grid of cells and we
determine the locations with maximal vector magnitude within each
cell. We then select a small subset of these local maximal vectors
as the basis for optimizing the scanner’s view directions. When
selecting the subset, we avoid picking locations that are too close to
each other and select locations only in non-adjacent cells.

To efficiently compute the subset of non-adjacent locally maximal



(a) Initial blind scan. (b) After 2 iterations. (c) After 3 iterations. (d) After 4 iterations. (e) After 5 iterations.

Figure 7: For an unknown digital model, its reconstruction is progressively and rapidly enriched as more virtual scans are performed. At
each scan iteration, multiple NBVs (indicated by green arrows) are computed and used for positioning the virtual scanner. The top row shows
the obtained point clouds, where the red ones are points acquired during the current scan iteration. The middle row presents the Poisson
reconstructed models; and the bottom row demonstrates the magnitude of the VVFs along a given slicing plane.
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Figure 8: Quantitative evaluation on reconstructed models shown
in Figure 7 that are obtained after different scan iterations.

magnitude locations, a greedy algorithm is used. With all the per-
cell local maxima vectors forming a set V = {vi}, the algorithm
starts with filtering out all vectors whose magnitude g(vi) is lower
than a given threshold. It then iteratively selects vi with the largest
g(vi) value from V and moves it to a second set V ∗. Once a vector
vi is moved, all vectors from the cells adjacent to vi are removed
from V to prevent them being added to V ∗. The process repeats
until the set V is empty.

As shown in Figure 6(c), the above greedy approach ensures that the
location selected each time is not in the neighborhoods of previous
selections and has the highest vector magnitude among the rest.
Thus, the set V ∗ gives us the positions for the NBVs. The vector
direction d(vi, sk) at each selected location points toward a low
confident iso-point sk. Our next goal is to select an optimal view
direction that allows the scanner to cover as many low confident iso-
points as possible, and at the same time cover enough high confident
iso-points to ensure an accurate point cloud registration between
the existing and the new scans. Thus, instead of using d(vi, sk)
to set the scanner’s orientation directly, we select a locally optimal

iso-point sk′ in the vicinity of sk and let the scanner point to sk′ ,
i.e., using direction d(vi, sk′). The location sk′ is computed by
maximizing the following objective function:

argmax
sk′∈Υk

η(sk′)ζ(sk′), (5)

η(sk′) = max
j∈Υk′

{w(vi, sj)f(sj)},

ζ(sk′) =
∑
j∈Υk′

w(vi, sj)(1− f(sj)),

where Υk is a set holding all the iso-points within the local neigh-
borhood (10% of the scan range df by default) of sk. Intuitively,
function η returns high values when there are confident iso-points
within the local neighborhood, whereas function ζ is high when
there are many low confident iso-points. Maximizing the product
of these two terms yields a neighborhood that contains high confi-
dent iso-points and, at the same hand, covers as many low-confident
points as possible; see Figure 6(d).

5.3 On-the-fly registration and reconstruction

When the scanner can be precisely positioned at the specified NBV,
the newly scanned raw points can be directly added to the existing
point cloud, i.e., no registration is needed. However, in practice,
misalignments do occur due to the precision of the robot move-
ment. To compensate this misalignment, we employ a weighted
ICP algorithm [Masuda 2002], where the weights are determined
based on the confidence map of the iso-surface. That is, points in
higher confident regions are given higher weights during the rigid
registration optimization.

Once the new scan is registered with the existing ones, the new-
ly obtained points need to be inserted into the point cloud. Note



Operation Time (sec) Percentage
Robot motion/capture 463 65%
Scan consolidation/registration 178 25%
NBV computation 71 10%

Table 1: The average time needed for a single scan iteration, which
usually covers 5 − 15 NBVs. The distribution of processing time
among different operations are also listed.

#Fig #Pt #Iter #NBV Time (min)
Figure 1 1828K 8 105 124
Figure 2 513K 3 35 41
Figure 10 406K 2 23 26
Figure 12 543K 2 25 29
Figure 13 2117K 10 127 154
Figure 14 376K 3 36 37
Figure 15 1777K 8 96 115
Figure 17 714K 4 41 49
Figure 18 4140K 15 213 235

Table 2: The overall time took for scanning each of the physical
models presented in the paper. #Pt: number of points in the final
point set surface; #Iter: number of scan iterations applied; #NBV:
number of NBVs selected in all iterations.

that these points not only come from areas requiring more scans,
but also from areas already sufficiently scanned. If our final goal
is to generate a 3D mesh using approaches such as Poisson sur-
face reconstruction, we can simply add all these points to the cloud.
However, if our goal is to generate a point set surface that faithfully
depicts the object, the excess of points can be redundant. Thus, we
selectively insert each new point pi based on a probability:

P(pi) = (1− f(sk))ρ, (6)

where sk is the closest iso-point to pi. By definition, the lower
the confidence value f(sk) is, the more likely that point pi will be
inserted into the point cloud. This allows points being added in
low confident regions to increase the scan quality, while keeping
highly confident regions unchanged. The parameter ρ (set to 3 by
default) controls how likely the new points are concentrated at low
confident regions. Figure 3(b) illustrates the effects of selective
point insertion. It confirms that, in our final point cloud, the point
density is much higher at areas with rich geometric details, such as
wings and legs, than in smooth regions, e.g., the main body. This
adaptive sampling rate is achieved as a result of the additional scans
applied to obtain similar high level of confidence at feature areas.

In Figure 7, we show a progressive virtual scanning on a digital
model with unknown shape based on our NBV computation. The
coordinates of the model have been normalized to the range [0, 1].
Figure 8 further plots how the global confidence measure (the av-
erage of the confidence values on all points) and the reconstruction
error (the closest distance to the original digital model) vary during
the scanning process. It shows that as more scans are performed,
the global confidence on the Poisson reconstructed surface is high-
er and the reconstruction error decreases monotonically, ensuring
the convergence. In practice, we terminate the scanning once the
overall confidence does not improve any more. That is, the acquisi-
tion completes when the global confidence difference between two
consecutive iterations is below a threshold (0.005 by default). For
example, in Figure 7, the scanning and reconstruction successfully
completes after the sixth iteration.

In addition, the plot in Figure 8 also demonstrates that the gradient-
based confidence measure has the largest increases after the second
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Figure 9: Quantitative evaluation on the reconstructed surfaces
shown in Figure 11. The error distributions measured using the
ground truth model are plotted in histogram, which shows that a
higher percentage of points has low errors using our approach than
employing visibility-based and PVS approaches.

and the third scan iterations, whereas the smoothness-based con-
fidence measure increases more dramatically after the fourth and
the fifth iteration. This suggests that the initial scan iterations im-
prove the completeness of the reconstructed model, whereas the
later ones add geometry details. This finding is consistent with
the results shown in Figure 5, where after the first 4 iterations, the
gradient-based confidence measure is high across the rather com-
plete surface, whereas some surface details are still missing and the
smoothness-based confidence measure remains low.

6 Results

We have applied the presented autoscanning technique to two dif-
ferent types of robotic platforms. The first is a mobile robot PR2
from Willow Garage, which is equipped with two 7-DOF arm ma-
nipulators. For fast data acquisition, we mount an Artec Spider
scanner to the PR2’s right hand and attach a 3D printed resin table
to its left hand (see Figure 1). This allows the robot to turn the ob-
ject that is placed on the table, rather than having to move its arm
around the object. As a result, the user only needs to specify the
position and orientation of the scanner for the first scan. The ac-
quired partial scan can be used to update the bounding boxB of the
object, which is then used to adjust the distance between the robot
arm and the turn table to avoid collision. The second platform is
a one-arm 6-DOF industry robot RV20-6 from Reis Robotics. We
mount a grasping tool at the end of the arm to hold the scanner and
use a motorized turntable to rotate the model; see Figure 10.

The two autoscanning platforms are tested using a number of high-
ly detailed and self-occluding physical objects, such as the action
figures in Figures 1 and 2 and the animal models in Figures 10,
12, and 13. During scanning, we utilize prior knowledge on the
geometry of the robot arm and the supporting table to remove any
captured points associated with them from the raw scan data. The
default parameter settings specified throughout the paper are used
for acquiring all models presented. The processing time and the
time distribution among different tasks are given in Tables 1 and 2.

The experiments show that blindly scanning complex objects often
results in missing parts, e.g., the feet of the action figures and the
trunk, wing, or horn of the animals. Through evaluating the confi-
dence of the reconstructed iso-surface, we detect these missing ar-
eas and apply additional scans. As demonstrated, the final scanned
models accurately capture the original objects.



Figure 10: An elephant model being scanned by a one-arm industry robot. The trunk is completely missing in the initial blind scan. Through
iteratively scanning from the automatically selected NBVs, the final model captures all geometric details.

(a) Visibility (85K pts). (b) PVS (86K pts). (c) Ours (74K pts).

Figure 11: Comparison with the visibility-based algorithm [Khalfaoui et al. 2013] (a) and the PVS approach [Kriegel et al. 2013] (b) on
the virtual model shown in Figure 5(a). Both approaches converge after 55 scans, since no more barely visible or boundary points can be
detected. Our approach (c) takes 67 scans under the default setting. However, through utilizing the selective point insertion strategy, the point
cloud of our result contains fewer points than the previous two approaches and yet captures more details.

(a) A dragon toy. (b) Initial blind scans. (c) Barely visible points (yellow). (d) Visibility-based recon.

(e) Boundary points (yellow). (f) PVS reconstruction. (g) Our confidence map. (h) Our reconstruction.

Figure 12: Comparison on a real object under the same number of scans. The initial blind scans (b) do not fully capture the input model
(a). The visibility-based approach [Khalfaoui et al. 2013] selects NBVs based on barely visible points (c). The surface reconstructed using
the first 25 NBVs is incomplete with the left wing missing. The PVS approach [Kriegel et al. 2013] performs better through detecting open
boundaries (e), but also yields an incomplete model after using 25 NBVs (f). Our approach produces a complete model using the same
number of NBVs (h).



(a) A plaster figure. (b) Initial blind scans. (c) Curvature-based result. (d) Density-based result. (e) Our result.

Figure 13: Reconstruction results under different confidence measures. For a given real object (a), the initial blind scans (b) do not cover
the full object. Evaluating local surface curvature and using them to guide the NBV selection cannot produce a complete model after 20
scan iterations (c). Using local point density to guide NBV selection generates a more complete model (d) using the same number of scan
iterations, but holes still exist at areas highlighted. Selecting NBVs using the presented confidence measures yields a complete model with
rich surface details after only 10 scan iterations (e).

(a) A complex object. (b) Our selected NBVs with the scan result. (c) Sphere-based NBVs with the scan result.

Figure 14: Comparison between two models obtained using the same number of scans. Scanning from the first 36 NBVs adaptively selected
for the input object (a) results in a complete model (b). The raised weapon and the feet are missing from the model (c) obtained by scanning
from 36 directions that are selected by a sphere-based NBV approach [Vásquez-Gómez et al. 2009].

(a) A pirate boat. (b) Manual scans. (c) Autonomous scans. (d) Confidence map of (c).

Figure 15: Comparison between models generated by manual scans and our autonomous scanner. Due to fine geometry details, complex
occlusions, and challenging surface properties, an experienced user took over 200 scans and spent more than three hours to register them
into a model (b). Our PR2 autoscanner achieves a comparable result (c) fully automatically with about 100 scans in less than two hours.
The autoscanner missed some parts that are captured by the user (highlighted in blue boxes). However, it registers the scans more precisely,
resulting an overall smoother model (e.g., areas in red boxes). It is worth noting that our approach, using the confidence map, properly
identifies areas that require additional scans (d), but the model cannot be further improved due to limitations of the accessibility.
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Figure 16: Left: reconstruction errors resulted by different levels of
simulated noise when scanning an unknown digital model; see also
Figure 7. Right: the final model reconstructed under the scanning
with strongest noise corruption.

Comparison to state-of-the-art techniques To evaluate the
performance of our approach, we compare our algorithm with two
recent NBV techniques [Khalfaoui et al. 2013; Kriegel et al. 2013]
that represent the state-of-the-art. Kriegel et al. consider the bound-
aries of the surface reconstructed from the points scanned so far and
select the NBVs that can best scan the boundary areas. Khalfaoui et
al. select NBVs based on visibility information, which guides the
scanner to cover the surface progressively. Implementing these two
approaches on our robotic platform indeed allows complete models
being automatically captured. However, neither approach consider-
s the quality of the reconstructed surface in NBV calculation. As
demonstrated in Figure 11, this leads to reconstructed models be-
ing much less detailed than ours. In addition, our approach selects
NBVs by locating topological uncertain areas from the results of
a Screened Poisson surface reconstruction. This makes it possible
to obtain a complete model with fewer scans than detecting surface
visibility or boundaries locally (see Figure 12), even though mini-
mizing the number of scans is not our design goal.

To measure the fidelity of the reconstructed models, we conduct a
quantitative evaluation using the input digital model as our ground
truth. Here the error is measured using the closest distance between
the reconstructed surface and the ground truth. The error histogram
plotted in Figure 9 confirms that our reconstruction is more accurate
than the competing approaches.

Comparison to more straightforward approaches To justify
that our confidence measure is not unnecessarily complex, we com-
pare it with two more straightforward approaches. The first one
is density-based, where the NBVs are selected to cover areas with
low point density. The second one uses importance-driven sam-
pling, where areas with high-frequency content, detected using lo-
cal curvature, attract more scans. Figure 13 shows that neither ap-
proach is as effective as the presented confidence measure. More-
over, the corresponding results do not give noticeable improvement
with more scans because they keep scanning the low density or high
curvature regions from less optimal viewing points. Our method
can achieve better results with fewer scans instead.

Figure 14 further compares the model acquired using our selected
NBVs with the one using a simpler alternative [Vásquez-Gómez
et al. 2009]. The latter approach restricts the NBV searching space
to a spheric surface (see Figure 14(c)). Such simplification helps to
reduce computational costs, but at the same time, introduces limi-
tations in handling complex, self-occluded, or feature-rich objects.

In addition, Figure 15 compares the models obtained by our au-
toscanner and by manual scanning. The latter was done using the
Artec Studio software and with interactive feedback until an expe-
rienced user felt that further scans can no longer improve the mod-
el. It shows that our automatic approach can achieve a comparable

(a) A ceramic figure. (b) PR2 scan. (c) Texture mapping.

Figure 17: Capturing both geometry and color information for the
textured modeling and photo realistic rendering.

model in less time and with much less user effort. In addition, since
the autoscanner performs all scans from known NBV locations, the
final registered result contains much fewer artifacts. Nevertheless,
the autoscanner does not capture as much geometry as an experi-
enced user is able to do. Our investigation shows that this is mainly
due to the non-negligible physical size of the scanner when com-
pared to the object size. As a result, placing the scanner at the
selected NBVs cannot ensure that low confident areas are visible
from all cameras and the structured lights on scanner, leading to
imperfect depth acquisition of such areas.

Comparison to current commercial solutions There are
already a few autoscanner products available in the market, such as
Rexcan CS+ ($ 60,000, http://www.aniwaa.com/product/equality-
tech-rexcan-cs-2-0mp), Matter and Form Scanner ($579,
https://matterandform.net/scanner), MakerBotDigitizer ($800,
http://www.aniwaa.com/product/makerbot-digitizer), Rubicon
Rubicon 3D ($550, http://www.aniwaa.com/product/rubicon-3d),
etc. These emerging techniques are inspiring, but in general their
mounted scanners have limited degrees of freedom, e.g., only using
sphere-based NBVs as shown in Figure 14, which make them hard
to scan big objects with complex topology.

Inexpensive hardware options and noise handling Our PR2
($400,000) can easily be replaced by a low-cost robot arm
such as UR5 ($30,000, http://www.universal-robots.com), and the
Artec Spider ($22,000) can exchange a cheaper scanner with
the same resolution such as DAVID Structured Light Scanner
SLS ($2,730, http://www.aniwaa.com/product/david-structured-
light-3d-scanner). Using inexpensive hardware may cause less ac-
curate scanner positioning and noisier scans. To see how robust our
autoscanner system is, we add both random and systematic errors
simulated as in [Berger et al. 2013] into the virtual scanner, where
the noise magnitude can be controlled by a user-specified parame-
ter. We then run our NBV computation with point cloud consolida-
tion preprocessing (Section 4.1) on the same digital model used in
Figure 7, with noise magnitudes ranging from 0, i.e., no noise, to 1
that can heavily corrupt the accuracy of the virtual scanning. The
resulted reconstruction errors are plotted at the left of Figure 16
and validate the robustness of our algorithm. The final model re-
constructed under the strongest noise corruption is presented at the
right, which still shows satisfactory quality.



(a) A church model. (b) Initial blind scans. (c) Next-best-scan of (b). (d) Next-best-scan of (c). (e) Final reconstruction.

Figure 18: Simulating an outdoor scene scanning scenario using a scaled church model (a). The areas with missing data in the initial blind
scans (b) are gradually covered in following scan iterations (e.g., c-d). The final reconstruction (e) is both complete and detail-preserving.

More applications Figure 17 shows that both geometry and color
of an object can be simultaneously captured using our autonomous
scanners, making it easy to perform texture mapping onto the re-
constructed surface. Nonetheless, we choose not to use color infor-
mation for computing NBVs, because color information may not be
accessible for all scanners and high color variation may not corre-
late with rich geometric details.

While the two robotic platforms used limit us to experiment with
small objects, the presented algorithm is capable of suggesting
NBVs for large-scale scanning as well. Figure 18 simulates an
outdoor scene scanning scenario, similar to the setting of Allen’s
work [Blaer and Allen 2007]. It shows that a complex church mod-
el is progressively scanned and successfully reconstructed.

7 Discussion and Future work

We present an autonomous scanning technique. The key is to ana-
lyze the quality of a tentative watertight iso-surface model extracted
from a Poisson field, and use the analysis to guide the selection of
NBVs. Iteratively scanning and analyzing the object lead to a high
quality surface reconstruction. In contrast to previous work, our
method is quality-driven and selects NBVs through locating areas
with geometrical and topological uncertainty in a global manner.

Please note that, due to the limitation of the scanner’s accessibility
(see Figure 15), we cannot guarantee a given quality requirement is
satisfied everywhere on the model. This limitation in fact applies to
virtual scanners as well (see Figures 7 and 11), since deep or com-
plex cavities are hard or impossible to cover. Generally speaking,
our approach is greedy, where at each iteration the scanner seeks
to improve the quality of the regions with the currently lowest con-
fidence. There could be more efficient sequences of scanning that
can reach the same quality faster, with fewer scans, or shorter path-
s. Also our current approach assumes that the scan sensor used is
isotropic. That is, we search for NBVs in 5D pose space, ignor-
ing the effects of sensor rotation about its normal. This is one of
the reasons that the scan acquired by our PR2 is not as complete as
the manual scan in Figure 15. Incorporating more advanced sensor
models [Gschwandtner et al. 2011] and searching in 6D pose space
may further enhance the results using the proposed framework.

Humans are relatively good at high-level view planning for cov-
erage of simple objects. However even experienced operators en-
counter considerable difficulties with topologically and geometri-
cally complex shapes. Besides guiding fully automated scanning,
our confidence map can also serve as visual feedback for user-
operated capturing systems to facilitate and simplify the acquisition
task. In the future, we would like to explore such semi-automatic
interactive scanning mechanisms.
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