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Abstract
Designing 3D objects from scratch is difficult, especially when the user intent is fuzzy without a clear target form.
In the spirit of modeling-by-example, we facilitate design by providing reference and inspiration from existing
model contexts. We rethink model design as navigating through different possible combinations of part assemblies
based on a large collection of pre-segmented 3D models. We propose an interactive sketch-to-design system, where
the user sketches prominent features of parts to combine. The sketched strokes are analyzed individually and in
context with the other parts to generate relevant shape suggestions via a design gallery interface. As the session
progresses and more parts get selected, contextual cues becomes increasingly dominant and the system quickly
converges to a final design. As a key enabler, we use pre-learned part-based contextual information to allow
the user to quickly explore different combinations of parts. Our experiments demonstrate the effectiveness of our
approach for efficiently designing new variations from existing shapes.

1. Introduction

Conceiving shapes from scratch is difficult since early
concepts are often fuzzy, ambiguous, and not fully
formed [PKM∗11]. In the early design stages, artists typi-
cally explore multiple conceptual options, without prescrib-
ing their details. For examples, artists prefer to start with
rough sketches, which they progressively over-sketch to
eventually converge to a conceptual shape. With a similar
motivation, the recent ShadowDraw system [LZC11] uses
a data-driven approach to guide the artists to create better
and well-proportioned sketches. The system, however, does
not immediately generalize to 3D since the evolving con-
ceptual shape cannot be observed or edited from multiple
view directions. We introduce a sketch-to-design interactive
system that instantly converts user sketches to part-based 3D
geometry, thus retaining the fluidity of the sketching process,
while allowing easy 3D model creation.

A successful 3D modeling system should be simple, in-
teractive, intuitive to use, and provide multiple design op-
tions for different user preferences. In our system, model-
ing amounts to navigating a space of mix-and-match mod-
els, with the user sketches and context information driving
the navigation. The user simply sketches prominent features
and desired shapes of parts, while the system computation-
ally retrieves the compatible parts and handles low-level op-
erations to assemble and warp the parts together. As the user
progressively explores and selects model parts, fewer model
parts with compatible context clues are left to choose from,
thus narrowing down design possibilities. As an analogy,

think of autocomplete option in textual search engines —
as the design session progresses, modeling speed increases
with fewer part options to select from (see Figure 1).

Advances in consistent decomposition of models into
parts (e.g., [KHS10, HKG11, SvKK∗11]) motivate part
reuse for model creation. We make use of relative place-
ment and context information across parts in large collec-
tions of semantically segmented parts to allow the user to
intuitively select, position, and glue parts to produce novel
models. Specifically, we analyze a large set of segmented
models to learn their contextual relations (e.g., part pairs in
contacts, in symmetry, or in similarity of geometry proper-
ties) and use the relations for smart design exploration. Thus,
we bypass the difficult task of understanding semantics of
the parts and their inter-relations.

Inspired by ShadowDraw [LZC11], we present an inter-
active system where the user roughly sketches parts over a
canvas that displays the current 3D model in the background.
We continuously analyze the drawing strokes and their con-
text to suggest relevant part combinations to the user via a
dynamic gallery, with contextual clues becoming increasing
dominant in the later stages of the session. At any stage, the
user sketches a part-profile in 2D, while the system suggests
multiple part possibilities using their original context. The
user selects one such possibility, the part adapts to the de-
sign, and the session proceeds (see supplementary video).
Note that the user can change viewpoint at any time.

Generally, sketch-based retrieval of parts is difficult. Since
parts display less variations compared to whole shapes the
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2 Xie et al. / Sketch-to-Design

Figure 1: Starting from an arbitrary 3D chair model (left), the user sketches (in red) over a light “shadow" of the chair. As the
session progresses, the user can rotate the current model and sketch over more convenient viewing directions. The user strokes
along with symmetry and context-information from pre-analyzed database models are used to retrieve, deform, and snap parts
to provide modeling suggestions to the user. Effectively, the strokes helps guide a part-based design space exploration.

visual cues between different parts are less discriminative
than those for whole shapes. Hence, purely silhouette-based
part retrieval is often too ambiguous. Further, the user’s
sketch in an open-ended modeling process often tends to
be less informative. In contrast to previous attempts (e.g.,
[LF08]), we remove such ambiguities by analyzing the con-
textual relations of the relevant parts. For example, while
designing a chair, a rounded chair seat may suggest, with
higher confidence, a rounded chair back rather than a square-
ish one. The correlated features include geometry properties
internal to the parts (e.g., parallel banisters of a chair back)
and not simply their outlines. During the sketch-to-design
process, we make use of such contextual relations to signif-
icantly reduce the search space of part assemblies, thereby
better assisting the designer to quickly converge to an ap-
propriate design. We evaluate the effectiveness of our mod-
eling system using a user study and present various models
generated using our system (see also supplementary video).

2. Related Work

Modeling remains a popular research topic with a host of
relevant efforts in recent years. In this section, we focus on
a few representative papers relevant to our work.

Sketch-based retrieval. Inspired by Funkhouser et
al. [FMK∗03], many image-based approaches have
been proposed towards sketch-based shape retrieval
(see [SXY∗11] and references therein). Earlier, Chen et
al. [CTSO03] propose Light Field Descriptor to encode 2D
projections of a 3D shape using a combination of contour-
and region-based shape descriptors. This method, however,
does not consider the interior feature lines. Recently, Eitz
et al. [ERB∗12] propose a bag-of-words based method to
encode view-dependent line drawings of the 3D shapes
using both silhouette and interior lines. Subsequently, they
learn a classifier based on a large set of human created
classified sketches. However, for sketch-based part retrieval,
we have to deal with imprecise and less discriminative
drawings of shape parts. We adapt sketch-based retrieval
proposed by Lee et al. [LF08], while achieving robustness
using contextual information among pre-analyzed parts.

Assembly-based modeling. As model collections grow,
modeling by part assembly provides a quick way to synthe-
size new models from the existing ones. In a seminal sys-
tem [FKS∗04], modeling-by-example rely on shape-based
search to find desired parts to assemble. The user provides
rough a 3D proxy of the required part, which is then used
to query the database of shape parts. While the concept is
powerful, the interface is cumbersome requiring users to
model, position, and manipulate proxies in 3D. Although
subsequently various sketch-based user interfaces have been
proposed [SI07, LF08, FSH11], the methods either require
sketching proxy geometry in 3D or restrict view manipula-
tions during any session.

Recently, Kalogerakis et al. [KCKK12] propose a prob-
abilistic model for automatically synthesizing 3D shapes
through automatic model synthesis using training data. Xu
et al. [XZCOC12] design part crossover for 3D model set
evolution based on part assembly with contextual informa-
tion. Jain et al. [JTRS12] study interpolation of man-made
objects through part recombination. Although such meth-
ods produce volumes of shape variations, the methods do
not provide the user with fine-grained control necessary to
facilitate interactive design. Shen et al. [SFCH12] exploit
the use of part assembly in recovering high-level structures
from single-view scans of man-made objects acquired by the
Kinect system.

Data-driven suggestions. We draw inspiration from data-
driven suggestions for modeling [CK10, CKGK11] and
shadow-guided sketching [LZC11], while sharing mo-
tivation from context-based search for models in 3D
scenes [FH10, FSH11]. Our focus, however, is to enable
an interactive sketch-to-design system to support conceptual
design. Thus we continuously present the user with a variety
of suggestions, with the user actively guiding the part-based
shape space exploration. The context information, updated
on the fly, allows robust retrieval of relevant parts thus al-
lowing the user to sketch imprecisely.
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Figure 2: System pipeline.

3. Overview

Our system comprise of an offline phase (Section 4) to pre-
analyze a 3D candidate part database and an online inter-
active modeling system (Section 5) driven by sketch-driven
context-based part retrieval and assembly.

Offline pre-processing. We assume the availability of 3D
model collections (e.g., [OLGM11]). We consider 4 classes
of models in our setup: aeroplanes, chairs, lamps, and vases
and allow users to explore part-based assemblies for cre-
ating model variations inside these classes. For each class,
we compute a representative shape. Our dataset is pre-
segmented and the parts are grouped by their semantic la-
bels (e.g., legs, slats, seat, wings, handle, etc.) and aligned
using upright orientation of the original models. We then ex-
tract contextual information among the parts. In the model-
ing session, we use these information to retrieve, place, and
connect the parts.

User interface. The modeling interface consists of three
parts (see Figure 3): (i) a canvas for sketching the model,
(ii) a suggestion panel displaying a gallery of relevant parts
retrieved from the candidate part database using the context-
information, and (iii) a panel showing the current design.
The user conveys her design intent via free-hand sketches
indicating 2D silhouettes, or 2D edges indicating prominent
geometric features. At the beginning, a reference model, ren-

Figure 3: A snapshot of our context-based sketch-driven 3D
modeling interface. The canvas for sketching is on the bot-
tom right panel; the suggestion panel displaying a gallery
of relevant parts is at the top; and the panel showing the
evolving model is at the bottom left.

dered in an NPR (line drawing) fashion in the canvas, is dis-
played to the user. The user can draw strokes over the refer-
ence model, in the similar spirit to ShadowDraw. However,
the reference model provides not only a reference for user’s
drawing but also the context for part retrieval and placement.
The user can change viewpoint at any point.

Modeling. The user starts by selecting a model types (e.g.,
chair, vase) as we show the representative model. Then, the
user progressively constructs a complete 3D model in a part
by part fashion using a sketch-based interface (see supple-
mentary video and demo). Modeling proceeds as follows
(see Figure 2):

(i) Reference-guided part sketching. The user, inspired and
guided by the related part of the reference model, over-
sketches a shape part on the canvas. The sketch not only
provides geometric hints for the part but also about their
size, position, etc.

(ii) Context-based part retrieval. Based on the user’s sketch,
we query the candidate part database and return a sorted
list of candidate parts in the descending order of rele-
vance based on degree of 2D-3D matching between the
sketch and the candidate part, and also contextual infor-
mation with finalized parts (see Section 5).

(iii) Context-aware part placement. From the retrieved candi-
date list, the user selects a part while our system auto-
matically computes an appropriate transformation to fit
the selected part into the current model. Again we rely on
contextual information for this step (see Section 6).

(iv) Contact-driven part snapping. To further enhance the
quality of the constructed model, we perform a contact-
driven part warping to snap the contact points of the part
to the finalized parts (see Section 6).

After each part placement, our system automatically sug-
gests a list of adjacent parts to be added next. The user sim-
ply selects the one she likes. Effectively, the user strokes are
used to only guide selection for part-based modeling (see
supplementary video).

4. Preprocessing

In the preprocessing step, we organize the input database
of 3D candidate parts to support the online parts query for
assembly-based modeling. First, we collect several sets of
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3D shapes, each belongs to specific shape classes. For each
class, we compute a representative shape as the center shape
in the space of Lighting Field Descriptor [CTSO03], which
acts as representative model for the class.

To build a candidate part-database, we perform consis-
tent segmentation within each class to decompose the mod-
els consistently into different functional/major parts. For
example, a chair model is decomposed into four major
parts: back, seat, armrest, and legs. Consistently segmented
and labeled datasets can be obtained using Kalogerakis et
al. [KHS10]. For models with multiple components, we use
the co-segmentation method of Xu et al. [XLZ∗10]. Further,
when automatic results are unsatisfactory (e.g., vases and
lamps), we manually correct the results. After segmentation,
all the candidate parts are grouped into semantic category
and aligned with the (manually assigned) common orienta-
tion for all the database models within the same class. The
upright orientation is used to compute the initial alignment
for the candidate part placement.

In order to support sketch-based part retrieval, we pre-
compute the suggestive contours [DFRS03] for each part
from 169 different positions uniformly sampled on the view
sphere. For each such suggestive contour image, we pre-
compute features as described in Section 5. To support
context-based part assembly, we pre-analyze each input
model to learn the mutual contextual information. Specif-
ically, for any pair of parts that are adjacent in the origi-
nal model, we compute the mutual spatial relations between
their oriented bounding boxes (OBB). Within each model,
we detect the global reflectional symmetry as well as the
inter-part symmetries [MGP06]. Finally, if a part is self-
symmetric and its symmetry reflectional axis is aligned with
that of the global symmetry of the whole shape, we record
the part to be self-symmetric.

5. Augmented Sketch-based Part Retrieval

In order to retrieve proper candidate parts using user
sketches we use a method similar to Eitz et al. [ERB∗12],
which uses a bag-of-words features for sketch-based 3D
shape retrieval. Additionally, we also consider contextual in-
formation whereby similarity is measured not only based on
the user’s sketch, but also taking into account the already
placed parts that are adjacent to the current one. Specifi-
cally, we introduce two contextual constraints to ensure the
consistency of both the overall shape and geometric details
between the current part and already placed adjacent parts.

5.1. Relevance score

Let cuser denote the user’s sketch. We measure the similar-
ity between cuser and a candidate part as a relevance score
that combines both the sketch-part similarity, i.e., the sim-
ilarity between the projected 2D contours (including both
silhouette and interior feature lines) of a part with the user’s

Figure 4: The relevance score for part retrieval contains
three components: (a) the similarity between the user’s
sketch and the contour of candidate parts, (b) the contextual
consistency of geometric style and (c) the overall style.

sketch, and the part-to-part consistency, which measures the
consistency between the already placed neighboring parts.
Thus, the part-part similarity incorporates the contextual in-
formation. Specifically, the relevance score for a candidate
part p ∈M is defined as

score(p) =s(cuser,c(p))+
1
|Ω| ∑

p′∈Ω

(λ1sdetail(c(p′),c(p))

+λ2s(c(p′),c(θM(p′)))),
(1)

where s(·, ·) measures the similarity between two 2D con-
tours, emphasizing mainly the large scale line features such
as silhouettes. In particular, the similarity measure sdetail(·, ·)
is confined within the silhouettes and focuses only on the in-
terior geometric details. This is achieved by taking a small
window at the center of the bounding box of the 2D contours
and measuring the similarity of the contours within that win-
dow. The window size is set as the 2/3 area of the (normal-
ized) bounding box with Ω denoting the set of adjacent parts
p which are already placed. The corresponding part in model
M that shares the same category with p is denoted by θM(p).

The first part of Equation 1 measures the similarity be-
tween the user’s sketch and the the contour of candidate parts
(Figure 4a). The second part accounts for the contextual in-
formation, where the first term sdetail(c(p′),c(p)) focuses on
the consistency of geometric style between two parts, indi-
cating that parts with similar geometric texture match better
(Figure 4b). The second term measures the consistency of
the overall shape style between two parts (Figure 4c). For
example, a squarish back of a chair matches better with a
squarish seat than a roundish one (see Figure 5). The weights
λ1 and λ2 are used to tune the importance of the two contex-
tual constraints.
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Figure 5: Consider parts p1 and p2 from two candidate
models to replace part pr. Taking into account the context
and their fitness function with p′r, part p1 fits better as it is
consistent with the 2nd term in Equation 1. Note that mul-
tiple retrieved parts along with their fitness scores are pre-
sented as suggestions to the user.

5.2. Feature representation.

In order to retrieve a 3D part according to the 2D sketch
cuser, we measure the similarity between cuser and the sug-
gestive contours c(p) of a part p obtained from the user’s
current viewpoint. Enforcing contexual consistensy requires
the comparison between two 3D parts, but the matching is
view-dependent. However, as we are only concerned with
the comparison between parts in the same category, we can
compute a common view for the parts and measure the sim-
ilairty between their suggestive contours from that common
view. Specifically, for each part category, the common view
is computed as the direction along the shortest PCA axis of
the averaged OBB of all parts in that category. Since all the
parts in the same category are aligned, we compute the aver-
aged OBB. The final similarity between two parts is the av-
erage of the contour similarities measured from both orien-
tations along the common view. Thus, both sketch-part and
part-part matching reduces to a image matching problem.

Both the 2D contours and the user’s sketches are treated as
2D images for which the feature representation is based upon
a bag-of-words (BOW) [SZ03] model. In our system, we
scale the images being matched into 320× 320 pixels. For
each image, we generate 32× 32 = 1024 key points evenly
distributed over the image by sampling on a regular grid and
extract local features around each key points.

We adopt the Gabor local line-based feature (GALF)
along with the optimal parameters suggested by Eitz et
al. [ERB∗12]. Specifically, 4 orientational filters are all used
to compute the Gabor response for 4× 4 = 16 cells around
each key point. For each orientation, its average response
within a cell is used to construct the final features for that
cell. Thus, each feature vector has a size of 4× 4× 4 = 64
per key point, and 1024 feature vectors per image. Before
extracting the features, we apply a skeletonization algo-
rithm [ZS84] to attain a unified line width for both the user’s
sketch and contours.

Based on the features extracted from the contours of all
candidate parts and views, we build a "visual vocabulary”
V = {wi} j by clustering the features, where each cluster cen-
troid is a "visual word". In our experiment, we set the size
of the vocabulary as 2500. Thus, each image in that view
is represented by a histogram of occurrences of these visual
words V .

Finally, we use Term Frequency-Inverse Document Fre-
quency (TF-IDF) weight [WMB99] to unify the computed
histograms. The TF-IDF balances the occurrence frequen-
cies of visual words in a spacial image and training set by
representing hi := (hi/Σ jh j)log(N/Ni) where Ni and N are
the occurrence number of the visual word wi and the total
number of visual words in the whole training image set, re-
spectively. The visual word occurrence histograms {hi}i are
matched using χ

2 distance, i.e.,

s(hi,h j) =< hi,h j > /||hi||||h j||. (2)

5.3. Part retrieval.

For online part retrieval, a straightforward approach is to
compute the relevance score using Equation 1 for each can-
didate part in the database and then obtain a list of most rel-
evant candidates with the maximal relevance scores. This,
however, gets expensive for a large-scale database. Instead,
we employ the inverted index structure [WMB99] to reduce
the search space.

Specifically, we learn three visual vocabularies Vk,k =
1,2,3 for the three terms in Equation 1, one for each term.
Based on the visual vocabulary Vk, for each query, we build
an index Indk to the subset Ak of the database that con-
tains the images sharing visual words with the query. Con-
sequently, the final search space for that query is formed by
the intersection of corresponding three image subsets, i.e.,
E := ∩3

k=1Ak. Because the histogram of visual words {hi}i
is always sparse, the number of images in E is much smaller
than that in the original database, the search time can be
greatly reduced.

5.4. Suggesting adjacent parts.

Once a part p is placed, we suggest candidates for its ad-
jacent parts p′ yet to be placed: We simply take the ad-
jacent parts of the top K parts returned for p. Generally,
these suggested parts may contain redundancy. To remove
the redundancy, we first perform a k-means clustering over
the suggested parts based on the shape distribution descrip-
tor [OFCD02]. Then, we show only the parts nearest to the
centers of clusters. Like the retrieved parts, the suggested
parts are also displayed in the suggestion panel to inspire
the user to proceed with modeling. The user can either pick
a part from the suggestions, or ignore the suggestions and
sketch instead.
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Figure 6: The context-based placement for parts. Top-left
figure illustrates “insertion ratio" between bounding boxes
with bottom-left showing the target chair. Middle and right
columns show the source chairs with the back (in green) and
their placements (bottom) that respect their original ratio
with the seat (in blue).

6. Part Assembly

Once the user selects a part p from the candidate list, we
automatically fit p to the user’s sketch cuser through adjust-
ing the size of the 2D bounding box of p projected from the
current view. After that, p is fitted into the target model be-
ing built through a context-aware part placement step and a
contact-driven part snapping step.

6.1. Context-aware part placement

Suppose that p and q are two adjacent parts in the source
model, q′ is the already placed counterpart of q in the target
model, meaning that q′ and q share the same semantic cate-
gory. Our goal is to connect p onto q′ reasonably. To achieve
a reasonable placement, we define a set of placement rules
R1 ∼ R3, which are based on prior-knowledge and the con-
textual information pre-analyzed from the source models:

(i) R1: Insertion ratio preservation. Suppose Bp, Bq, and
Bq′ are the OBB’s of part p, q, and q′, respectively. When
placing p, we maintain the insertion ratios of Bp over Bq′

in the model being built with respect to that of Bp over
Bq in the source model. Given two neighboring OBBs
Bp and Bq, we measure the insertion ratios of Bp over
Bq as dx/x, dy/y, and dz/z, where dx, dy, and dz are
the penetration amount of Bp over Bq (see Figure 6). By
preserving the insertion ratios, the parts can be placed in
a same relative position as in the source model.

(ii) R2: Center alignment. Some neighboring parts (e.g., the
back and seat of a chair) are both self-symmetric and their
reflectional axes are aligned with each other in the source

model. The pre-analyzed constraints are applied during
the part placement (if applicable), simply by re-aligning
the two parts through aligning their reflectional axes.

(iii) R3: Inter-part symmetry preservation. Inter-parts
symmetries (e.g., the two armrests of a chair) are also
pre-detected. Thus, once a part is placed, its symmetric
counterpart is retreived from the source model and auto-
matically placed according to the symmetry.

6.2. Contact-driven part snapping

After the part placement step, neighboring parts are well
connected for most of the cases. However, there may still be
parts are not well connected due to the discrepancy of part
size and/or geometry, where the parts may need (non-rigid)
deformation to achieve a better snapping. We address this
using a contact-driven part snapping. During the offline pre-
segmentation, we have recorded the connection points be-
tween any two neighboring parts. These connection points
are used as contact points to drive the parts to deform and
snap to their neighboring parts in the target model. Specifi-
cally, after a part is placed, our system will “drag” the con-
tact points of the part to the nearest points (or the contact
points if existing) of its neighboring parts. Accordingly, the
part is deformed using the shape matching based deforma-
tion [MHTG05] (see Figure 7).

6.3. Part stitching

Finally, we perform part stitching to guarantee quality result-
ing models. For two parts to be connected, if the connectors
in their source models are both detected as locally smooth, a
scaling is applied to maintain such a local smoothness in the
target model. Otherwise, we simply place them together. Af-
ter stitching, we sow the mesh along the cutting seam using
a mesh stitching [SBSCO06]. The local smoothness are de-
termined by comparing the sizes of bounding boxes of con-
nectors in two parts (see Figure 8).

Figure 7: Snapping overview: (a) Initial placement of a han-
dle with two connecting points; (b) the handle is deformed to
snap to the vase body by first snapping the red contact point;
and (c) then the purple contact point.
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Figure 8: Illustration of local smoothness. In the top two
models (left), the transitions between the body and base are
both detected as smooth, therefore in the result #1 such
smoothness is maintained by scaling the two parts being
connected. In contrast, the connecting parts in result #2 are
left unchanged.

7. Result

We collected a database consisting of 448 3D objects across
six categories for our system. These objects were divided
into four subsets, where each contained semantically similar
models. The four subsets were: chairs and tables (308 mod-
els), aeroplanes and birds (48 models), vases (34 models),
and lamps (58 models). We allow the creation of interesting
variations by mixing the objects from different categories
(sharing similar semantic labels). For example, a tabletop
can sometimes be selected for the seat of a chair; or, the
wings of a bird can be plugged onto an aeroplane’s body.
In this section, we first evaluate the part retrieval aspect of
our method and then the effectiveness of the system via a
user study. A light weight demo system is submitted as ac-
companying material.

7.1. Context-based part retrieval

Context-based part retrieval depends on two criteria (see
Equation 1): (i) consistency of geometric style between the
retrieved part and the already-placed adjacent ones, and
(ii) the consistency of the overall shape style between the
parts. To evaluate the effect of the contextual information,
we test the part retrieval of our system under different pa-
rameter settings of λ1 and λ2 in Equation 1, through user
evaluation.

With each database, we asked 8 users to design new mod-
els using our system. For each user, we randomly select from
the design sessions 3 retrieval scenarios each of which has at
least 3 already placed parts serving as context. For each sce-
nario, we let another 8 participants to vote for the candidate
parts (with the same category as the current one) from all
the other models in the database on whether the candidate

Figure 9: Accuracy rate of part retrieval for four databases
under different parameter setting for λ1 and λ2.

fits well with respect to the already placed parts, serving as a
“ground truth”. Thus for each scenario, we obtain a consis-
tent list through selecting the top ten candidate parts based
on the positive votes. If 3+ of the top 10 retrieved parts in
a scenario overlaps with its consistent list, we record it as
accurate. The accuracy rate is computed with respect to all
the scenarios selected for the database.

Figure 9 shows the accuracy rate for different database
under different parameter settings of λ1 and λ2. The chair
database gains the most in accuracy from the two contextual
constraints. This is because chairs possess prominent geo-
metric styles (in terms of both geometric details and over-
all shapes) making the contextual style consistency impor-
tant. For lamps and vases, the accuracy gain is dominated by
overall shape styles due to the lack of geometric details. For
the airplanes, the contextual information plays a negligible
role possibly because of negligible shape variations in the
database.

In Figure 10, we show the effect of the contextual con-
straints where we show the retrieval results for a back part
of a chair model with the seat fixed under different parameter
settings. When both constrained are disabled (λ1 = λ2 = 0),
the retrieval results are affected only by the user’s sketches.
However, when they are both enabled (λ1 = λ2 = 0.5), the
retrieved parts are more consistent with respect to the neigh-
boring parts and conform better to the user voted “ground
truth”.

7.2. User experience

We test the effectiveness of our interactive modeling sys-
tem via a user study involving 16 participants. The group
of users consisted of 3D modelers/artists, graduate students
in graphics, and non-graphics students (novice users), in
roughly equal proportions. Before the actual testing, partic-
ipants were allowed to get familiar with the system under
the guidance of our developers, typically <15 minutes. We
conducted two types of user studies: The first one is goal-
directed modeling to test the effectiveness of our system in
returning relevant parts in order to construct a model similar
to the goal. The second one is free modeling where the user
is allowed to freely design new models by exploring various
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Figure 10: Comparison of retrieved results with and with-
out contextual information: (a) the reference model and its
contours with user’s sketch, where the seat of chair has
been fixed; (b) the “ground truth” matching parts voted by
8 participants; (c) the retrieved results according to only
the user’s sketch, i.e., λ1 = λ2 = 0; (d) the results with
λ1 = 1.0,λ2 = 0.0; (e) the results with λ1 = 0.0,λ2 = 1.0.
(f) the results by considering both the user’s sketch and the
full contextual information, i.e., λ1 = 0.5,λ2 = 0.5.

part assemblies offered by our system. This tests the ability
of our system in supporting the conceptual design of new 3D
model. In all studies we used λ1 = λ2 = 0.5.

Goal-directed modeling. Although our system is designed
for open-ended modeling, in order to evaluate the perfor-
mance of our retrieval module, we first conduct a goal di-
rected modeling experiment. We give the users a collection
of photographs containing the target object and ask them
to build 3D models as similar to the targets as she/he can
do. We have conducted a “Google challenge”: we used four
key words “chair”, “lamp”, “vase”, and “plane” to search for
four categories of photos from the Google Image search en-
gine. For each category, the top five returned images were
presented to the used as the goals for modeling. The model-
ing results were cross-rated among the participants. The top
modeled shapes (according to the user scores) for each goal
photo are in Figure 11. Additional user study results can be
found in the accompanying material.

In order to investigate the effect of the contextual part re-
trieval in the goal-directed modeling sessions, we record in
Table 1 how many collected models were temporarily se-
lected (number of mouse clicks by the user) during designing
a new model. Two different parameter settings in Equation 1
are compared. As expected, modeling time is shortened by
considering contextual information.

Free modeling. In the second user study, we asked the 16
participants to freely create ten different objects using our
system. Here the users are not provided any specific target as
goal, except knowing the category she wants to model. Fig-

objects system parameters average clicks
chair λ1 = 0,λ2 = 0 15

λ1 = 0.5,λ2 = 0.5 9.5
λ1 = 0,λ2 = 0 8

table λ1 = 0.5,λ2 = 0.5 6.5
λ1 = 0,λ2 = 0 13

airplane λ1 = 0.5,λ2 = 0.5 11
λ1 = 0,λ2 = 0 10

lamp λ1 = 0.5,λ2 = 0.5 8
λ1 = 0,λ2 = 0 13

vase λ1 = 0.5,λ2 = 0.5 10

Table 1: The average numbers of the temporarily selected
models in the database for designing a new model under dif-
ferent retrieval strategies, where λ1 = 0,λ2 = 0 means no
contextual information is considered for the retrieval.

ure 12 shows a portion of the modeling results produced by
the users. We note that the newly generated models contain
a fair amount of variation from the original database models
(see the accompanying material for all the database models).
According to their modeling experience, about 85% of the
participants confirmed in questionnaire that they have sig-
nificantly benefitted from the intermediate modeling sugges-
tions and the ability to change viewpoint during modeling.
Among the rest 15%, most preferred sketching all parts by
hand than adopting the automatically suggested ones.

Table 2 shows the response time of retrieval and assembly
per part. Since we use the inverted index structure, the run-
ning time on part retrieval does not dependent on the scale
of a dataset, but rather mainly on the amount of geometric
variations of the 3D models within the dataset. The less vari-
ations in the model set, the more shared visual words in their
BOW features, which consequently means the search space
resulted by the inverted indexing is denser (See Section 5.3).

Limitations. The current system, however, is limited in its
creation of finer level of geometric textures (e.g., surface pat-
terns) and micro-structure assembly. Although such textures
can possibly be suggested through context (e.g., a beamed
chair seat is likely to have a matching beamed back), current
sketching tools do not support their direct creation. Also, we

Dataset Size Retrieval Assembly
Chair 172 14 41
Table 136 13 14
Chair+Table 308 14 20
Lamp 58 13 21
Airplane+Bird 48 297 23
Vase 34 294 77

Table 2: Response time of retrieval and assembly in millisec-
onds on various datasets.
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Xie et al. / Sketch-to-Design 9

Figure 11: Examples of the “Google challenge" test. The reference photos are the top five search results from Google engine
with the key words “chair", “lamp", “vase", and “plane", respectively. The objects in each image were modeled by the users
using our system. The best result corresponding to each photo is displayed here.

focus mainly on conceptual design and produce approximate
part assemblies via part snapping, which is guided by only a
small number of contact handles.

8. Conclusion

We presented an interactive sketch-to-design system where
user provided 2D strokes are used to enable data-driven navi-
gation of design spaces comprising of part-based object vari-
ations. For each sketched part, the system suggests plausi-
ble 3D shape candidates based on curved-based matching as
well as contextual cues, which are extracted from model col-
lections (e.g., models from Google Warehouse). Inspired by
recent success of assisted sketching systems like Shadow-
Draw, we support 3D modeling that continuously provides
design suggestions to the users based on the user strokes.
The user can freely change viewpoints during the design
session. Retrieved parts are deformed, positioned, and con-
nected to the existing model, again based on context infor-
mation, as the user implicitly is guided through the possible
design space. We demonstrated the effectiveness of the sys-
tem in both creative design (i.e., no preset design targets)
and modeling from photo inpirations (e.g., re-model from
Google Photos) via various user sessions.

With the growing accessibility of model collections and
tools to automatically analyze, explore, and handle such col-
lections, we expect to see many data-driven modeling sys-
tems. An important direction to explore is to relate geometry
to high level object semantics and also bring in support for
low-level texture and micro-structural analysis. Ideally, the
rich knowledge learned from the database can serve as the

“mind’s eye” for the design system. A true creative design
should allow us to go beyond conventional forms and se-
mantics, to achieve a new level of aesthetics and comfort.
For example, a conceptual chair may simply be created out
of a few wires, disrespecting the usual functional or seman-
tical decompositions. In the future, we want to bridge this
gap in an effort to better support creative design in the early
stages of conceptual design.
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