
Non-local Scan Consolidation for 3D Urban Scenes

Qian Zheng1 Andrei Sharf1 Guowei Wan1,2 Yangyan Li1 Niloy J. Mitra3 Daniel Cohen-Or4 Baoquan Chen1

1 SIAT, China 2 National Univ. Of Defence Tech., China 3 IIT Delhi 4 Tel Aviv Univ.

Abstract

Recent advances in scanning technologies, in particular devices
that extract depth through active sensing, allow fast scanning of
urban scenes. Such rapid acquisition incurs imperfections: large
regions remain missing, significant variation in sampling density is
common, and the data is often corrupted with noise and outliers.
However, buildings often exhibit large scale repetitions and self-
similarities. Detecting, extracting, and utilizing such large scale
repetitions provide powerful means to consolidate the imperfect
data. Our key observation is that the same geometry, when scanned
multiple times over reoccurrences of instances, allow application of
a simple yet effective non-local filtering. The multiplicity of the ge-
ometry is fused together and projected to a base-geometry defined
by clustering corresponding surfaces. Denoising is applied by sepa-
rating the process into off-plane and in-plane phases. We show that
the consolidation of the reoccurrences provides robust denoising
and allow reliable completion of missing parts. We present evalu-
ation results of the algorithm on several LiDAR scans of buildings
of varying complexity and styles.

1 Introduction

Digital acquisition of objects has been an active research topic in re-
cent years. This has been fostered by significant advances in scan-
ning technologies, in particular devices that extract depth through
active sensing. To faithfully capture a model, especially those large
in extent, often an extensive acquisition process is required to guar-
antee a good coverage of the entire surface of the subject [Levoy
et al. 2000]. However, due to time and accessibility limitations,
such an elaborate acquisition setup is not always affordable for
large scale urban landscapes and often the surface has to be recov-
ered from rather imperfect scans, i.e., noisy, incomplete and cor-
rupted with outliers.

Reconstruction of urban models is gaining increasing attention
these days, motivated by ambitious applications that aim to build
digital copies of real cities (e.g., Microsoft Virtual Earth 3D and
Google Earth 3D). For such gigantic applications, rapid, robust and
complete scanning is imperative. The dominant scanning technol-
ogy for this purpose consists of LiDAR scanners mounted over air-
borne or street level vehicles, which scan buildings while the ve-
hicles move at their normal driving speed. Although this yields
coherent 3D points of scanned models, such scans are often noisy
and incomplete (see Figure 1).

In this paper we focus on the enhancement and consolidation of im-
perfect scans of urban models. The main challenge is how to sig-
nificantly improve the quality of the data starting from such noisy,
non-uniform, and incomplete scans. Direct surface reconstruction
from such poor quality of input data is inconceivable, and an unre-

Figure 1: Consolidating a LiDAR scan captured 3D building con-
taining noise and missing regions. (Left) Repeated parts are de-
tected and colored. (Right) Result of non-local filtering and consol-
idation of the repeated parts.

alistic goal (see Figure 2). Luckily, models of urban landscapes ex-
hibit a high degree of self-similarity and redundancy. We explicitly
make use of this characteristic of urban scenes to enable plausible
geometry recovery. The key observation is that the same geometry
is scanned multiple times over reoccurrences of the repeated parts.
The non-local multitude of geometry provides opportunities to de-
noise the data by applying a non-local filter and to complete missing
parts using information from remote regions. The challenge lies in
automatically determining which points to retain and which ones to
prune out. Instead of making strong prior assumptions about the
models and blindly recreating geometry using predefined procedu-
ral rules, we work directly with the scans and consolidate them,
attempting to extract maximum information from the messy scans.

Regularity and self-symmetry in urban buildings is not a chance
occurrence, but is demonstrated universally across countries and
cultures. Such large scale repetitions arise from manufacturing
ease, build-ability, aesthetics, etc. Also because of functional re-
quirements and constraints, buildings are mostly comprised of flat
or near-planar faces. While in recent years many techniques have
been developed to detect repeated parts in models [Debevec et al.
1996; Hays et al. 2006; Mitra et al. 2006; Korah and Rasmussen
2007; Pauly et al. 2008; Musialski et al. 2009], most of these works
do not investigate how to best use the strong regularity present in



Figure 2: Comparison with state-of-the-art point consolidation
method. The input (top-left), result using WLOP [Huang et al.
2009] (top-right), result using WLOP on the union of detected rep-
etitions aligned to one instance (bottom-left), and result using our
consolidation method (bottom-right). Respective zooms for one
balcony are shown.

3D scans, specifically in urban buildings. Moreover, most of the
techniques are applied in image space by analyzing photometric
2D images sampled over an underlying regular domain. Only few
attempts have been made towards detection of regularity directly on
3D geometry (e.g., [Pauly et al. 2008]).

We investigate the central question of given a set of imperfectly
scanned repeated parts, how to enhance the quality of each of the re-
occurrences. We show that consolidation of the registered reoccur-
rences using non-local filtering provide superior robust denoising
and allows reliable completion of missing parts. Most building are
designed and generated in a procedural and modular fashion [Mer-
ritt and Ricketts 2001]. However, instead of learning parameters
for a codebook of rules, we attempt to learn the repetitions pattern
directly from the data, using high level user guidance when data
quality is poor. We split the denoising into two steps: off-plane
and in-plane denoising based on the registration of corresponding
planes and lines, respectively. By partitioning the algorithm into
two distinct phases, we significantly reduce the cross contamina-
tion of data across planes. Buildings are largely made of dominant
planes or low complexity faces, e.g., cylinders, separated by large
angles allowing effective off-plane denoising. While a naive re-
construction from scanned building data produces poor results, we
demonstrate that working with higher order primitives like lines and
planes, and explicitly recovering their mutual relations and regular-
ity allow us to create superior results, which cannot be achieved by
local methods. We applied our method to a large selection of urban
models containing varying amount of repetitions. We demonstrate
our scan consolidation results on data sets acquired rapidly by a
moving device producing rather sparse and low quality data.

Contributions. We present a scan-consolidation framework that:

• uses non-local filtering for scanned data filtering across mul-

tiple recordings of repeated geometry in urban buildings,

• operates in the parametric space using high-order primitives
for reliable processing, and

• incorporates a statistical error metric minimization scheme to
robustly handle noise, outliers, and deal with missing data.

2 Related Work

Non-local filtering. Data acquired by scanning devices always
contains some degree of noise and outliers. Denoising has been
extensively studied in image processing, e.g., [Perona and Malik
1990; Rudin et al. 1992; Lindenbaum et al. 1994; Tomasi and Man-
duchi 1998], and has also been applied for surface denoising, e.g.,
[Fleishman et al. 2003; Jones et al. 2003; Oztireli et al. 2009]. A
different approach for removing noise is by non-local filtering re-
cently proposed by Baudes and colleagues [2005; 2008]. The basic
idea is to average similar neighborhoods irrespective of their spa-
tial proximity. Dabov et al. [2007] further utilize non-local sim-
ilarity groups and filter an image in 3D transformation domain.
The idea of non-local filtering has also been investigated for sur-
faces [Yoshizawa et al. 2006]. Such an approach is more resilient
to noise than local filters provided that the data exhibits sufficient
self-similarity and redundancy. Our work takes the non-local idea a
step further by explicitly using the pronounced self-similarity com-
monly found in most urban building models.

Our work is closely related to the work of Musialski et al. [2009]
where the regular structures commonly present in (orthographic)
images of building facade are exploited using a non-local filter.
Prevalent symmetries, specifically dominant translational and re-
flective ones, are searched for and a lattice of repeated patterns
detected. Subsequently, information is propagated by a diffusion
process based on similar symmetric pixels. The propagation allows
rejecting outliers like street signs, cables, lights, etc., and repairing
the facade image. Unlike their work, we operate directly on 3D
point cloud data and consolidate the raw scans using the extensive
underlying repetitions.

Fitting-based reconstruction. The primary goals of our work
are denoising, completion, and in general consolidation of the
scanned data, as a pre-process for any surface reconstruction (see
also [Huang et al. 2009]). Such a goal of recovering surface from
poor, noisy, insufficiently sampled point clouds is ill-posed and un-
realistic. Previous attempts regularized the problem by using priors
in the form of primitive shapes and using the data for fitting and pa-
rameter finding. Such an approach is common in CAD, where the
process can be regarded as reverse engineering since often models
are defined by a combination of basic geometric primitives.

Gal et al. [2007] match local geometric priors to local neighbor-
hoods of 3D scans at multiple scales using partial shape match-
ing. As a consequence, the scan is augmented with noise-free
data, high-quality normal information, and sharp feature markups.
The augmented data can be considered as a consolidation of the
scanned data allowing a reliable reconstruction. Recently, Schn-
abel et al. [2009] present a hole filling algorithm that is guided by
primitive shapes that have been detected in the input point cloud.
Surrounding primitive structures around the holes are extended to
complete the holes and synthesize edges and corners from the prim-
itives’ intersections. The problem is formulated as a surface en-
ergy minimization solved using graphcut. However, both methods
assume moderate quality of data and quickly degenerate on poor
quality inputs, as in our case.
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Figure 3: Consolidation pipeline. (Left-to-right) (a) Repeated instances in an input scan are detected, and each instance is partitioned into
groups of points using RANSAC. Here the repeated instances are partitioned into planes with associated confidences. (b) The instances are
brought together by factoring out their repetition, followed by ICP registration. (c) Planes across multiple instances are clustered, and each
group represented by its weighted median. Points are then projected onto the planes for off-plane denoising. (d) In each plane, edge lines are
detected, weighted by their confidence, and a set of representative weighted median lines selected. (e) The line segments induce a partition on
the plane, and regions with low confidence are removed. (f) Consolidated instances, with both off- and in-plane noise reduced, are projected
back to obtain the final result.

Repetitions detection. Our method is heavily based on the ex-
istence and detection of repeated parts in architectural models. De-
tection of regular or near-regular patterns has been widely studied
and analyzed for images (e.g., [Liu et al. 2004a; Liu et al. 2004b;
Park et al. 2009], with some work specifically focusing on analyz-
ing facades. The early work of Schaffalitzky and Zisserman [1999]
automatically detects imaged elements that repeat on a plane typi-
cally occurring in urban facades. They compute features and use
RANSAC to detect repetitions under projective transformations.
Yu et al. [2001] extract full objects from scanned data by an iter-
ative clustering process similar to us followed by a coarse-to-fine
segmentation. Wang et al. [2002] computes a facade texture map
by removing occlusions and noise from multiple images associated
with camera model and a coarse 3D geometric proxy for buildings.
They compute a weighted-average consensus facade from the im-
ages aligned with the 3D model, then deblur and detect windows
by edge detection and rectangular fitting. Missing data is recovered
by assuming periodicity in horizontal and vertical directions on the
facade.

Muller et al. [2007] perform autocorrelation analysis on 2D facade
images to generate a 3D procedural model counterpart. To detect
the facade structure, they subdivide and cluster the image into repet-
itive tiles under translational symmetry. Models are inferred by
comparing against a predefined library of 3D ones, projecting them
onto 2D, and matching in the image space. The algorithm performs
extensive analysis on 2D image edges, with the user required to
manually adjust the depth of the fitted models in the scene. Re-
cently, Korah and Ransmussen [2008] address the problem of auto-
matically detecting 2D grid structures such as windows on building
facades images taken in urban settings. They work under the as-
sumption that the background is strongly structured, which allows
searching for near-regular textures in the image and the detection of
rectangular structures in a grid-like pattern.

In the area of shape analysis, Pauly et al. [2008] present a frame-
work for discovering repetitive structures in 3D geometry. Structure
discovery is performed by analyzing the space of pairwise similar-
ity transformations of local surface patches. They observe that in
many cases the spatial coherence of repetitive structures leads to ac-
cumulative patterns in the corresponding transformation space. Ap-
propriate functions are presented to map similarity transformations
onto planar uniform grids. To detect regular structures, a grid is fit-
ted to the clusters using a global optimization method. Bokeloh et
al. [2009] observe that line features are more stable than point fea-
tures, and propose an iterative closest line algorithm to match line

features. Repeated elements are detected using a region growing
starting from the constellations of the matched line features. These
state-of-the-art techniques focus on detecting repeating elements in
3D models, but do not investigate means to use the detected struc-
tures for extensive data improvement or completion.

Recently, Xiao et al. [2009] proposed 3D facade reconstruction
from street view images using a multi-view semantic segmenta-
tion along with inverse patch-based orthographic composition and
structure analysis to create compelling results using strong priors of
building regularity. In contrast, we make use of the self-similarity
present in typical buildings and street-view scanned data, to per-
form non-local filtering and scan repair, resulting in significantly
improved reconstructions (see Figure 1). Unlike previous work in
surface completion and reconstruction [Pauly et al. 2005], the input
to our data is large volumes of poor non-uniformly scanned data,
on which most existing methods cannot be applied. By gathering
and consolidating from many repeated instances, we show that sig-
nificantly better, though not perfect, results are achievable. Note
that comparison with ground truth is based on visual validation in
absence of a better reference data for comparison.

3 Overview

In this work, we investigate means to explore, detect, and use large
scale repetitions, regular or unstructured, for consolidating noisy
and incomplete scans acquired using state-of-the-art LiDAR scan-
ners. The acquired data comes in the form of point clouds, and lack
any segmentation or high-level structural information. Such data
quality makes it challenging to detect repetitions, where we simul-
taneously look for repeated elements and also infer how they are
repeated. While recent research efforts [Müller et al. 2007; Pauly
et al. 2008] have demonstrated success when working with images
or scans as inputs, they either make strong assumptions about the
pattern of repetitions and data quality, or may fail when the number
of repeated instance are not large.

Our consolidation framework works in the following key stages:

1. Using user guidance repeated facade elements are extracted
as instances.

2. Each instance is segmented into a set of planes.

3. The instances are registered to a consistent coordinate system,
and corresponding planes across instances are identified using
parameter space clustering.



4. Representative planes are selected for groups of clustered
ones, and off-plane denoising performed.

5. Using a similar scheme in 2D, occupied polygonal regions are
identified in respective planes in the in-plane denoising phase.

Finally, the consolidated instances are propagated back to the orig-
inal positions to get the consolidated building scans. Except for the
repeated instance extraction that requires user interaction, the other
steps in the pipeline are fully automatic.

Since steps 2 – 5 for data consolidation strongly depends on the
successful repetition detection, later we present a simple and gen-
eral strategy for detecting and extracting repeated instances in raw
scans. Assume that we detect I = {I1, . . . , In} as repeated in-
stances of some point set geometry, along with the transformations
that relate them. Say Tij denotes the transformation when applied
to instance Ii aligns it to Ij , i.e., Tij(Ii) → Ij . As multiple such
repeated instance sets are typical in our data sets, our consolida-
tion procedure is applied simultaneously to all of them. For each
group, we bring their elements into a consistent coordinate frame,
i.e., I′ = {I ′

1, I
′
2, . . . , I

′
n} = {I1, T21(I2) . . . , Tn1(In)}.

Incompleteness and sparsity of data due to scanning can be assumed
to be random and appear at different places across instances. Once
aligned, missing parts in instances can be consolidated using better
data from across instances. However, we demonstrate that a naı̈ve
application of this philosophy leads to only marginal improvement.
Our scans, originating from urban buildings, largely consist of flat
faces. We demonstrate that making explicit use of this informa-
tion as a prior, and working on primitives such as planes, and their
subsequently in-planes, lead to significantly better results. The key
idea is to denoise by clustering corresponding parts and projecting
the points of corresponding parts to their cluster representative. We
make the method robust to outliers and varying sampling density
by incorporating locally adaptive confidence weights.

Building facades are typically made of flat faces, and lack in enough
geometric details to aid in registration or alignment [Aiger et al.
2008]. Further, details when present, are often missed by LiDAR
like scanners due to their low scanning resolution. We start by
working with such planar faces that can be reliably estimated. First,
each instance Ii is segmented into planes Pi = {P i

1 , . . .}, and
each point of the instance associated with one of the planes (see
Figure 3a). The segmentation is performed using a RANSAC ap-
proach, and planes and their coupled points are assigned weights
based on the confidence in the plane. Note that |Pi| may vary across
instances due to large chunks of missing data.

To establish correspondence between the planes of {P1, . . . ,Pn}
we take an indirect approach. First, the instances in I′ are lo-
cally aligned and registered using iterative closest point (ICP) al-
gorithm [Besl and McKay 1992], while using I1 as the reference.
To make this alignment step robust we weight each point with re-
spect to the confidence of its plane. Once the instances are aligned
(see Figure 3b), the constituent planes are simply grouped based on
proximity in the (plane) parameter space. Finally, for each plane
cluster we choose a representative. The choice for representative
directly affects the final result. We show that the obvious choices
are ill-suited for our purpose, and a careful weighted median in the
parameter space gives good performance (see Figure 4). Then all
the points are projected onto their representative plane to remove
off-plane noise (see Figure 3c). Next, we apply a similar proce-
dure to the in-plane points, where line segments take the role of
planes. In this in-plane phase, we also remove points that reside
in sparse regions of the union point set, which typically arise due
to presence of transparent elements such as glass pane windows
(see Figure 3d). Finally, the point sets are consolidated and the data

propagated across instances, to get a consolidated point set (see Fig-
ure 3e). The consolidated data can then be used for reconstruction
or prior-driven procedural synthesis. Next we provide further de-
tails about the individual steps of our algorithm.

4 Algorithm

Plane estimation. In the first step of the algorithm we use
RANSAC to segment data corresponding to each instance Ii into
planes, and associate each point with its plane normal. We reject
planes that are below a threshold in RANSAC voting (50 votes in
our experiments). To robustly handle noise and variable sampling
density, we compute a confidence value for each plane. For an esti-
mated plane Pi let the projected points be denoted by {p1,p2, . . .}.
The local density dj around each point pj is approximated by mea-
suring the radius of its k-nearest neighbor (k=10 in our implemen-
tation). Then the confidence weight w(Pi) in the plane is a combi-
nation of three factors: (i) its area σ(Pi), (ii) its homogeneity, i.e.,
the variance of the point density across the plane η(Pi), and (iii) its
anisotropy φ(Pi), i.e., the aspect ratio between the two eigenvalues
of the covariance matrix of the corresponding projected point set.
The combined expression for confidence of plane Pi is given as,

w(Pi) = σ(Pi) · η(Pi) · φ(Pi). (1)

ICP registration. Next, we apply a weighted ICP based align-
ment of the planes, where higher weights are given to planes with
higher confidence. In this step we align multiple instances using
pairwise alignments, keeping one selected plane fixed as the base.
Since such a series of alignments is order-dependent, we select the
instance with the largest sum of confidence as base. In each ICP it-
eration, we subsample the point cloud and associate each point with
its nearest point in the base based on the L2 deviation of their nor-
mal vectors. Figure 3b shows the overlaid results after the ICP step.

least squares fit line

median line

mean line

weighted median line

0 1

RANSAC line

Figure 4: Illustration of cluster representative. (Top) A cluster of
lines and their associated points, generated by sampling from a
base line (in dotted gray) with noise added in the parameter space.
The lines are assigned colors based on computed confidence com-
puted based on respective point distributions. (Bottom) The least
squares fit line to the complete set of points is shown in purple.
The RANSAC line is shown in olive green. The mean, median and
weight-median lines, computed in the parameter space, are illus-
trated in pink, yellow, green, respectively. The weighted median
line takes into account the length of the respective line segments,
and are hence robust to outlier segments.



Figure 5: Within each repetition, we weight planes by their con-
fidence values. In this figure, we indicate grouping using shading
(green, red, purple), and confidence in each group using luminos-
ity. Darker shades denote higher confidence. Note due to oblique
angles, the data is noisier and sparser at higher levels.

Instead of greedily fixing a base, one can employ simultaneous reg-
istration techniques [Biber and Strasser 2006]. However, we found
such a procedure slow and unsuitable for handling very large num-
ber of planes, as in our case. Although the results are not perfectly
aligned, they are close enough to perform a reliable clustering of
the planes, which we describe next.

Clustering. Planes that are similar are clustered together, with
similarity measured using a L2 norm between their parametric
coefficients. We represent each plane P presented in the form
n · p + d = 0, with ‖n‖ = 1 and p ∈ P , using a three tuple
(nx,ny, d), i.e., as a point in 3D. Distance between planes Pi, Pj

is measured using ‖Pi − Pj‖2. While conceptually this is sim-
ply clustering in a 3D space, we give more weight to the dominant
planes obtained from multiple repetitions. This is an important de-
tail that allows to robustly handle point sets with missing data, or
those arising from thin unstable planes.

For reliability, we deliberately order the clustering process, and ap-
ply it incrementally. We insert the planes from all the instances into
a priority queue ordered by their respective confidence weights. We
then create one cluster at a time, guided by the priority order. A
plane that is inserted into a cluster is removed from the priority
queue. The clustering radius is a user defined parameter and de-
pends on the data quality. In this procedure, the dominant planes get
priority and are created early on. We discard small clusters below
a threshold size of max(|I|/4, 2). Thus, for a planar component to
appear in the final consolidation, it has to be captured well at least
in two instances.

Cluster representative. For each cluster of planes C =
{P 1, . . .} we need to select a representative Pc. Subsequently, we
project all the points associated with the cluster onto the represen-
tative plane. The resulting point set is now free of off-surface (see
Figure 3c).

The many points in a cluster come from different instances and form
a thick point cloud. A natural choice for representative plane seem
to be the least squares fit to the thick point set. However, our key
observation here is that it is more effective not to ignore the point
source, but rather to compute the representative plane of the cluster
in a parametric plane space.

We represent each plane by its coefficients in the parametric form
using (nx,ny, d). Thus, we operate in a 3D space, seeking for
a proper representative plane Pc in 3D. A simple approach is to
take the average of of all point in that 3D plane space, or the L1-
median similar to the proposal by Lipman et al. [2007]. However,
in the presence of strong outliers, the mean and even the L1-median
can yield erroneous planes. This is demonstrated in a 2D example
in Figure 4. On the top, the lines and their associated points are
depicted. On the bottom, we see the position of the median and L1-
median lines. As we can see their orientation does not agree with
the major lines in the cluster, since they are affected by the outliers.

For a given cluster C, we formulate the weighted L1-median mini-
mization as:

P L1
c =

∑
i∈C P i · w(P i) · θ(‖P i − P 0

c ‖)∑
i∈C w(P i) · θ(‖P i − P 0

c ‖) . (2)

This defines a reweighted iterative solution using a fast-decaying
weight function θ(r) = exp(−r2/(h/4)2). The support radius h
is set in our algorithm to the cluster size. Outlier planes are char-
acterized by being rather sparse or of rather small area, i.e., of low
confidence. Thus, by taking the weighted L1-median as the repre-
sentative plane, where the weights are defined by our plane density
measure (Equation 1), we down-weigh the outliers to get a good
representative.

Note the location of the weighted median plane in Figure 4. It
should be emphasized that by construction our clusters contain only
planes with similar orientations and outlier planes are unlikely to
have such a strong affect as illustrated in Figure 4. Nevertheless,
the weighted median yields a reliable representative, and given that
the confidence value are readily available, the computation is sim-
ple, efficient, and effective.

In-plane denoising. To consolidate the in-plane lines in each of
the representative planes, we perform a similar clustering process,
but in 2D (see Figure 6). Using the detected prominent in-plane
lines we partition each plane into regions. The density of the points
in each region is used to classify the regions into inliers and out-
liers. Inliers regions are then upsampled, while points belonging to
outlier regions are discarded. Note that analyzing the in-plane data
and detecting lines is naturally supported by much less data, pos-
ing an additional difficulty in their correct consolidation and outlier
removal. In the following, we provide some details.

For each plane Pi in each instance, we separately perform the fol-
lowing: We first detect all possible boundary points by examining
the local neighborhood distribution of each point (we use a neigh-
borhood of 20 points). Let the eigen-values of the covariance matrix
of neighborhood of point pi be λi

0, λ
i
1 in increasing order. Then we

mark point pi as a boundary point, if λi
0/λi

1 < η, with η = 0.2 in
our examples.

Next we perform a RANSAC line detection over all marked bound-
ary points and remove those with few vote (≤ 3). Each line, being
defined by a subset of the points, are further partitioned into seg-
ments by removing large unsampled sections along the line. For
each line segment li we define the line confidence w(li) based on
its local point density and length.

We perform a similar incremental clustering algorithm as in the
case of planes, starting with the dominant, high confidence lines
and clustering based on metric distance in a 3D line parameter
space {mx

i ,my
i ,nx

i } denoting line segment centers mi and orien-
tations ni, respectively. We always cluster lines from correspond-
ing planes. For each cluster, the weighted L1-median is used to
as the the representative line. We remove the clusters with small
number of elements, and regularize the remaining representative



Figure 6: (Top-left) Four repeated instances with corresponding
in-plane detected lines segments. Due to sparsity of data and high
amount of outlier, simple consolidation of line segments lead to
mediocre results (top-right). However, consolidation with weighted
median filter coupled with an orthogonality regularization produces
significantly improved results (bottom-left), which is used to parti-
tion the plane into inlier-polygons (bottom-right). Note that the
lines are not constrained to be axis aligned.

line segments using a filter that gives preference to orthogonal ar-
rangement of lines. The resulting segments induce a partition of
the plane, and based on the number of points (per unit area) in each
polygon we classify them as inliers or outliers (see Figure 6).

Extracting repeated parts. Detecting, extracting, and exploiting
such large scale repetitions provide a mean to consolidate the data
exploiting the underlying redundancy. Repetitions are detected us-
ing local descriptors. Two parts are considered to be similar if they
contain similar configurations of local descriptors. The problem is
challenging as we have to detect similarity across parts with only
partial matching, with small repeated subparts (see Section 3). The
detection is an integral part of our problem since we assume that
large missing parts require consolidation exploiting underlying rep-
etitions. After an offline pre-processing phase, we allow fast user
generated query based search for identifying similar sections of the
scans. False positives appear at this stage, which we prune out in
a validation stage. Remaining outliers marginally affect the final
result since later we employ robust statistical tools for data consol-
idation.

We start by computing a large set of local descriptor Di across the
point cloud that is first embedded inside a 3D grid with each voxel
being 0.1m along each dimension. Each descriptor is a cube con-

Figure 7: The user selection (marked in red), and the resulting
clusters and votes. Here, three clusters, marked by boxes of three
different colors, were detected. The red spheres illustrate the accu-
mulation of votes per cluster repetitions, with the saturation of the
red reflecting the amount of votes.

Figure 8: Performance of in-plane denoising with varying number
of repetitions (5, 4, 3 along the vertical direction) and increasing
amount of noise and outliers (uniform random noise 1.25%, 2.5%,
and 5% with respect bounding box diagonal length). Repeated in-
stances are independently generated, but of similar quality.

sisting of 4 × 4 × 4 binary voxels, which are concatenated and
represented as a binary vector. A voxel is set to ‘1’ if its density of
points is large enough (more than 50 points per cell in our exam-
ples), and to ‘0’ otherwise. Two descriptors Di and Dj are said to
be similar if their bitwise AND exceeds a prescribed value ς , i.e.,
Di AND Dj > ς . Similar descriptors are clustered into types, and
those with significant cluster size retained.

After this pre-processing phase, the user loosely selects a region
as a query (see Figure 7). The selection results in a set of sig-
nificant descriptors of various types. We encode the configuration
formed by such descriptors using (rigid invariant) relative coordi-
nates at some pivot point of configuration. Detection of repeated
sections now amounts to finding similar configuration of descriptor
types (see also sub-graph matching for line features employed by
Bokeloh et al. [2009]). Based on the relative coordinates (possibly
more than one) associated with each descriptor type, all the de-
scriptors vote for absolute coordinates. Each descriptor type is as-
sociated with some offsets or a relative coordinate defined by their
location in the query configuration. Note that it is possible that in
the query there are a number of descriptors in different locations
and each adds one offset. Then, absolute coordinates with many
votes are candidates to be a pivot of a similar configuration.

The generated candidates often have false-positives. We prune them
out in a validation step, where a candidate region with similar con-
figuration is considered similar to the query region after a valida-
tion using a cube of voxels, however, this time at a higher resolu-
tion. Again, two cubes are said to be similar if there is a significant
partial match between them, which is determined by counting the
number of voxels that contains about the same number of points.

5 Results

Since real data rarely comes with ground truth to validate consol-
idation results, we tested our algorithm on synthetic 2D data with
progressive amount of noise added, and with increasing number of
repetitions (see Figure 8).
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Figure 9: Input and consolidation results on a building with only six floors. The consolidation result can be judged by comparing with the
photograph of the building.

input LiDAR scan consolidated ouput

Figure 10: Input and consolidation results on a very tall building with progressively poor data quality with height. Even though the data
quality looks worse in comparison with Figure 9, the consolidation output is superior due to the high amount of repetitions.

We tested our algorithm on a variety of buildings scans obtained
using a Optec Lynx LiDAR scanner mounted to a jeep driving typi-
cally at 20 mph. We list below the default set of parameters used in
the various stages of our system. Further information can be found
on our project webpage.

• Out-Plane Denoising: (i) cluster radius: 3.0 × median dis-
tance to nearest plane, (ii) cluster size: max(|I|/4, 2), where
|I| is the number of repeated instances, and (iii) cluster
weight: min(|cluster size|/10, 0.3).

• In-Plane Denoising: (i) λ0/λ1 < 0.2, (ii) scan interval:
0.005, and (iii) density threshold for validating a polygon: 0.7
× average density of the corresponding plane.

• Repetition Detection: If half of two voxelized regions are
same, we consider them to be repeated instances.

Table 1 shows the performance of our system on various models
presented in this paper.

In all the examples, the raw scans were directly processed and con-
solidated by our system. In each case, the user bootstrapped the
process by marking a few query regions (see Figure 7). Compared
to 2D, the consolidation effects in 3D are more pronounced, due
to the additional off-plane denoising. Figures 9 and 10 shows con-
solidation results on two buildings with varying repetition pattern.
Note that although visually the input data quality of the tall building
looks worse, due to a higher number of repetitions the consolida-

tion results are in fact better as compared to the complex building
example.

For Figure 11, a building with fine details and sharp features, the
consolidation results are satisfactory for the areas with large fea-
tures. However, in regions where we have delicate structures in
surrounding regions, we end up learning false ‘details’. This is not
surprising, since in this case noise is high, large parts of the data are
missing, and the number of detected repetitions is only three, which
is probably too few for effective consolidation.

Buildings, specially high rise ones, sometimes have characteristic
cylindrical parts, e.g., capsule elevators. We extended our consoli-
dation framework to detect and handle such patterns. In our algo-
rithm, we supplement the plane fitting to RANSAC based cylinder
fitting (see Figure 12). Although the system can be expanded to
handle other low parameter count primitives, such inclusions are

model # pts. # queries # repet. prep. time cons. time

complex 128,558 2 5—6 60s 160s
walls 327,230 3 4—12—12 150s 164s
tall 433,325 3 7—17—25 55s 135s
cylinder 1,354,305 15 [3-32] 320s 215s
teaser 737,723 12 [6-8] 300s 99s

Table 1: Performance statistics on a 2.67 GHz Intel Core i7-920
with 6GB RAM.
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Figure 11: Captured walls with high detail and large noise (left) are consolidated (right), while our weighted median in-plane consolidation
preserves the fine detail (bottom zooms). In presence of high noise and large missing parts, we falsely detect additional lines (compare with
simulation results in Figure 8).

input LiDAR scan
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Figure 12: We consolidate a large urban scene, containing cylinders as a repetitive component.

only justified if such patterns are common on urban facades.

Limitations. Our scan consolidation framework is designed for
urban buildings with large scale repetitions. When the data assump-
tions are not met, we get incorrect results (see Figure 11). Our sys-
tem needs some user queries to start looking for repetitions. For the
type of data we consider, we believe that user assistance is probably
unavoidable. While having the user in the loop prevents the system
to be used in an unsupervised mode, loosely speaking as we work
close to noise margin some crude guidance is needed to differenti-
ate between signal from noise. Although repetition detection is not
the focus of this work, its accuracy does dictate the quality of the
consolidation results.

6 Conclusions

We presented a pipeline for consolidating imperfectly scanned data
of urban buildings. We exploit the large scale repetitions commonly
found in building scans and use it to denoise the input in two phases:
off-plane and in-plane. Using robust statistical weighted medians
for planes and for lines, we demonstrate that the original input
can be significantly denoised, rectified, and consolidated. With the
growing popularity and availability of LiDAR scanners, we expect
our method to help produce consolidated scans sufficient for many
of the online navigation and virtual city generation applications.

The output of our system can possibly be used for reconstruction
and procedural synthesis.

In the future we plan to focus on developing an algorithm to facili-
tate automatic detection of repetitions. The problem is hard because
of the data quality and noise margin. Nevertheless, using high level
data descriptors as well as limiting the search space to only few
symmetry classes could alleviate the problem. The ultimate goal
is to reconstruct good quality models using the consolidated scans
possibly in conjunction with other easily accessible data sources.
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