
Architectural Modeling from Sparsely Scanned Range

Data

Jie Chen Baoquan Chen

University of Minnesota

Abstract

We present a pipeline to reconstruct complete geometry of architectural
buildings from point clouds obtained by sparse range laser scanning. Due to
limited accessibility of outdoor environments, complete and sufficient scanning
of every face of an architectural building is often impossible. Our pipeline
deals with architectures that are made of planar faces and faithfully con-
structs a polyhedron of low complexity based on the incomplete scans. The
pipeline first recognizes planar regions based on point clouds, then proceeds
to compute plane intersections and corners 1, and finally produces a complete
polyhedron. Within the pipeline, several algorithms based on the polyhedron
geometry assumption are designed to perform data clustering, boundary de-
tection, and face extraction. Our system offers a convenient user interface but
minimizes the necessity of user intervention. We demonstrate the capability
and advantage of our system by modeling real-life buildings.

Keywords 3D scanning; range image; geometry reconstruction

1 Introduction

Acquiring 3D models of real-world objects has been an interesting and challenging
problem in the computer vision and graphics communities, and is beneficial to
many applications such as urban planning, architectural design, surveillance, and
entertainment, to name just a few. Image-based techniques [2, 8, 17] can only
achieve simple 3D geometry and generally are not robust or require significant
human input. In the last decade researchers have started to employ laser scanning
technology to directly perform 3D measurement of real objects; examples include
the Michelangelo project [1] and the IBM Pietà project [3]. The objects that are of
interest in these projects are usually of small to medium size (up to several meters
tall); scans can be carefully set up to ensure a fairly complete and dense sampling
of the entire object. Constructing 3D geometry from such scans is performed by
triangulating the dense point clouds [13, 6]. Strategies have been developed to patch
holes where data is missing in the scans. More recent work has explored using
context [16], atomic volumes [15], or example models [14] in achieving geometry

1In this paper, we use the informal terms corner or vertex corner to stand for a polyhedron
vertex. See the Overview section for notation declarations.

1

completion. However, there still does not exist a general technique that can be
applied to objects that come in a wide variety of shapes.

For large outdoor architectural object scanning, it is intrinsically difficult to
always obtain complete and sufficient sampling of all the surfaces due to the physical
constraint of positioning the scanner. Scans obtained under these conditions can
partially or completely miss entire faces (such as roof tops). Moreover, reflective
surfaces such as glass windows and walls often return invalid signals to the scanner
and hence are often missed. The sampling rate of a surface is sensitive to its distance
and relative orientation to the scanner location. Given these additional challenges,
we strive to generate complete geometry from sparse point clouds. Our strategy is
to take a top down approach to geometry construction, rather than the conventional
bottom up approach of direct triangulation. At the current stage, we handle only
buildings that fulfill the following condition:

Basic Assumption. Surfaces of a building exhibit planarity and it can be repre-
sented by a (possibly non-convex) bounded polyhedron.

A majority of architectures in existence nowadays satisfy this assumption. The
planarity property allows faithfully fitting a polyhedron to the scanned data. Our
polyhedral models are of significantly low polygon count compared to those with
millions of triangles obtained by conventional triangulation methods. Fitting in
polyhedra rather than triangulation makes the geometry construction process more
immune to the usual deficiency of point cloud data in outdoor scanning. Moreover,
our modeling process is mostly automatic and requires user’s assistance only when
certain ambiguities cannot be resolved computationally; in such cases, the user
input is extremely straightforward and simple, i.e., merely selecting planes, lines or
corners.

There has been research on employing certain knowledge or priors to improve
modeling accuracy. For example, certain properties such as near perpendicularity
between walls and floors can be leveraged when performing data fitting and shape
parameter estimation [9]. Our approach can generally benefit further from such
assumptions or constraints.

2 Overview

For consistency, throughout this paper, our polyhedral model representation is de-
fined combinatorially as a collection of faces, edges and corners. The term vertices
will be used in the discussion of graphs. Each bounded face lies on an infinite plane,
which is fitted to a set of scanned points. An edge of the polyhedron resides on a
plane intersection (line).

Before introducing the modeling pipeline, we first quote the following observa-
tion from our experience of outdoor environment scanning:

Data Deficiency. Data obtained from outdoor long range scanning suffers from
noise, self and inter-object occlusion, and uncontrollable physical conditions (e.g.,
light and wind). A laser scanner emitting lights that pass through glassed surfaces
(such as windows) does not obtain valid data representing these regions.

2

The scans we usually work with are missing large portions of data, and the
high level of noise makes the traditional approach of triangulating point clouds
inappropriate. This calls for an alternative method for modeling objects.

Our modeling process begins with identifying planar regions of the scanned data
and computing their plane representations. A reliability measure for the data points
is defined. We estimate normals of points and utilize their confidence to perform
clustering of coplanar points. Then neighboring information for the resulting clus-
ters can be easily confirmed and adjacency between planes is computed. To deal
with building faces that are completely missing, we devise a boundary detection al-
gorithm to compute the piecewise linear boundaries of the identified clusters. These
boundary line segments are used to guide the recovery of all the missing planes and
intersections through an efficient and simple user interface.

Now that we have all the planes where the target polyhedron faces lie as well as
their intersection lines, we extract the bounded polygons of each face. An elegant
algorithm based on dual polyhedron can be used to facilitate this operation with
the condition that each face falls on a distinct plane and no two edges rest on the
same intersection line. We relax this restriction and solve for the face boundaries
by introducing a new concept—the cluster graph, which shares a similar spirit with
dual polyhedron but is more accommodating in practice. For certain ambiguous
cases, the user provides cues or selections to carry forward the extraction. The final
polyhedron consists of a collection of oriented faces that are defined as ordered lists
of corners.

Figure 1 shows the pipeline of the whole process.

(a) Scanned data. (b) Points are clustered and
representative planes are fit-
ted. (Section 3.1 and 3.2)

(c) Some of the plane inter-
sections are computed. (Sec-
tion 3.3)

(d) All the planes and inter-
sections are recovered. (Sec-
tion 4)

(e) Some of the faces of
the target polyhedron are ex-
tracted. (Section 5)

(f) The final reconstructed
model.

Figure 1: Pipeline of the modeling process.

3

3 Planar Regions and Their Intersections

This basic step is to detect all the planar surfaces captured in the scanned data.
Choosing a maximal subset of points that can be fitted by a plane within an error
threshold can be done via progressive regression. However, such fitting is vulnerable
to the presence of outliers.

Several statistical models have been proposed to fit a function to a (sub)set
of data points by pruning outliers. Fleishman et al. [10] use a forward search
approach that grows a cluster of points to its maximal size and iteratively works on
the remaining points such that several clusters, each of which represents a smooth
part, are found. The algorithm robustly fits a piecewise smooth surface to a point
set, but the search process is time consuming, with quadratic complexity to the size
of the clusters.

Since points on a plane share the same normal orientation, the Gauss map maps
a polyhedron to a discrete set of points on the unit sphere. Hence normals of the
scanned data can be estimated, and considering noise, they form clusters whose
centers best approximate the normals of the polyhedron’s faces. We thus use the
assistance of these normals to cluster the data points. Figure 2 shows an example
of the Gauss map of a building whose surfaces are mostly planar.

(a) Gauss map of the scanned
data. Color opacity indicates
confidence rate, the lighter in
color the lower in confidence.

(b) Clustering result of the
data with confidence larger
than 0.9. Note that the
two clusters, yellow and green,
share the same normal orien-
tation.

Figure 2: Gauss map of the scanned data corresponding to Figure 1(a).

3.1 Normal Estimation

Normal of a point p can be computed by least-squaredly fitting a plane to the set of
points within its neighborhood. The neighboring points can be efficiently located in
each 2D range image. A complete set of neighbors are formed by taking the union
of the results from each image. Further cleaning-up, such as using segmentation
techniques, distance thresholding, etc, can be performed to exclude points belonging
to surfaces different from on which p lies [18].

Let {pi}i=1:n denote the set of neighboring points of p. The eigenvectors v1, v2,

4

v3 of the covariance matrix

M =
n∑

i=1

(pi − p̄)(pi − p̄)T , (1)

where centroid p̄ =
∑n

i=1 pi/n, form a local coordinate system originating at p̄. Let
the corresponding eigenvalues λ1, λ2, λ3 be ordered as 0 ≤ λ1 ≤ λ2 ≤ λ3. The plane
being fitted to {pi} passes through p̄, and has a normal in the same direction 2 as
the least eigenvector, i.e., v1. Oriented towards the scanner, it is assigned to be the
normal of p.

The eigenvalues of M indicate the principal components variances. The smaller
λ1 is relative to λ2 and λ3, the flatter the distribution of {pi} is. We define the
confidence rate of p, denoted κ, as

κ = 1− 3λ1

λ1 + λ2 + λ3
∈ [0, 1]. (2)

When κ approaches 1, the neighborhood of p can be safely approximated by a plane,
and the noise on the points {pi} is relatively small. Thus κ is a reliability estimate
of p.

3.2 Scanned Data Clustering

We now cluster data points based on the computed normals np of each point p. The
objective of clustering is that all points belonging to the same cluster are captured
from the same planar surface of the building. Thereafter principal component analy-
sis (PCA, as in (1)) can be performed on each cluster to derive plane representations
which will make the faces of the target polyhedron.

In order to do fast clustering, we design an efficient algorithm that utilizes the
confidence rates of the data points. They have two impacts:

• Low κ occurs on points whose neighborhood is not flat or is noisy, which means
that these points occur either at the discontinuity of surfaces or where noise
is high. A threshold κT can be introduced to filter points with low reliability.

• Points with high κ are reliable and can serve as seeds when growing clusters.

The algorithm first prunes out points with confidence rate lower than κT . For
the remaining set, it picks the point p with the highest κ (called the seed), searches
points that potentially lie on the same plane as the seed, and forms a cluster. We
set a threshold NT to supervise the size of the cluster. In the event that the cluster
is too small, it is suspected to be highly influenced by noise and we conservatively
ignore point p. The clustering process proceeds recursively with the remaining
points after a cluster is found.

We set two criteria to check whether a pair of points, p and q, lie on the same
plane:

1. np and nq are roughly parallel, i.e., np · nq is close to 1.

2We use the term direction in representing both of the opposite directions of a normal vector
without differentiation. Only the term orientation exactly represents the vector direction.

5

2. p−q is roughly orthogonal to both np and nq, i.e., max{np ·(p−q), nq ·(p−q)}
is close to 0.

Again, we can set two thresholds, pT and oT , to screen the parallelism of the normals
of p and q, and their orthogonality to the vector p− q.

By taking the parallelism criterion np ·nq ≤ pT , the algorithm essentially consid-
ers only points having normals within the cone that has a central axis np and open
angle 2 arccos(pT). In case np is far from the normal of the plane that it resides
on, many potential points are omitted. We do clustering in multiple passes, within
each the centroid of the cluster and the normal of the approximated plane is used
as the seed to find the cluster in the next pass. In practice the convergence is very
fast and a 2-pass clustering is sufficient to include all points on the same plane.

Algorithm 1 summarizes the details of this section. Figure 2(b) shows the clus-
tering result of an example building.

Algorithm 1 Clustering Scanned Data

1: C ← {p | κp ≥ κT }
2: while C 6= ∅ do
3: p∗ ← arg maxp∈C{κp}
4: Set seed s ← p∗, ns ← np∗

5: repeat
6: C ′ ← ∅
7: for all p ∈ C do
8: if np · ns ≥ pT and |max{np · (p− s), ns · (p− s)}| ≤ oT then
9: C ′ ← C ′ ∪ {p}

10: end if
11: end for
12: if |C ′| ≥ NT then
13: Fit a plane to C ′. Plane equation n · (x− c) = 0.
14: Set seed s ← c, ns ← n
15: end if
16: until convergence of n or |C ′| < NT

17: if |C ′| < NT then
18: C ← C\{p∗}
19: else
20: A new cluster C ′ is thus formed. C ← C\C ′.
21: end if
22: end while

3.3 Plane Intersections

Given two non-parallel planes P1 and P2 computed from two clusters C1 and C2,
and their intersection line lP1P2 , the evidence that the two are neighboring faces of
the building is that in each of C1 and C2, there exist data points close to lP1P2 .

Consider two neighboring faces of a real building. If both faces can be captured
by the scanner, it is highly likely that there are scanned points near the intersection
edge, unless the edge is obscured. We use this criterion to conservatively find the

6

adjacent plane pairs. Nevertheless, due to deficiency of the scanned data, some
pairs may not be detected this way. In such cases, the user can intervene to provide
further guidance as discussed in Section 4.2.

4 Boundary Detection

As a more significant situation of data deficiency, a face of a building can be entirely
missed during scanning, such as rooftops. The intersection of the plane on which
such a face resides with neighboring planes can only be inferred from the piecewise
linear boundaries of the captured data. On the other hand, the missing planes can
be approximated from these boundary line segments. For this purpose, we design
an algorithm to compute the boundary of each identified cluster.

4.1 Cluster Boundary

2D edge detection is a topic in image processing that has prevailed for a long time
in computer vision and graphics. One can either use feature detecting filters [19], or
apply the Hough Transform [4] on a particular shape, to detect edges presented in
an image. Several 3D edge detection techniques have also been developed, mainly
to solve the problem of range image segmentation [12]. We propose a novel method
that computes the piecewise linear boundary indicated by a set of 3D points.

b

(a) A cluster of points.

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b

b

b
b
b

b

b

bb

b

b

b

b
b

b

b
b

b
b

b

b

b

b

b

b

b

b
b

b

b

bb

b

b

b

b

qb

nqδ
b

l

b

(b) The local neighborhood
of a point q.

(c) Fast filtering out points far
way from the boundary.

Figure 3: Analysis on a cluster of points projected onto plane.

By projecting a cluster onto its representative plane, we obtain a discrete set of
points, denoted Q ⊂ R2. See Figure 3(a). Locally if a point q sits exactly on the
boundary, all its neighboring points lie on one side of the local boundary line passing
through q, unless q is close to a concave corner. Let the set U = {ui} ⊂ Q\{q}
denote all points within the radius-r circle centered at q. Any line passing through
q partitions U into two parts: U1 and U2. The local boundary line maximizes
||U1| − |U2||.

Regardless of whether q is a boundary point or not, the line l maximizing ||U1|−
|U2|| indicates how close q is to the boundary. When it indeed is a boundary point,
this line best approximates the local boundary. Let t represent the direction of the

7

line, where ‖t‖ = 1, the problem is equivalent to

maximize
∑

i

t× ūi, where ūi = (ui − q)/‖ui − q‖. (3)

Since t×ūi points towards the same direction for all i, and the sign of t×ūi indicates
on which side of t ui lies, maximizing

∑
t× ūi gives a t such that as many ui’s are

on the positive side of t as possible.
In the simplest computation, t is a direction orthogonal to

∑
ūi. In other words,∑

ūi is the normal direction of the line passing through q. Orienting it outward,
we assign −∑

ūi to be the normal of q.
Let the signed distance of a point ui to the line l be negative when the angle

between ui − q and nq is acute. We set a threshold δT < 0 to screen the smallest
signed distance (denoted δ) between all the ui’s and l. When δ ≤ δT , q can hardly
be considered close to the boundary. When δ > 0, all the points {ui} are on the
inner side of the line. |δ|/r ∈ [0, 1] indicates how close q is to the boundary.

Once boundary points are identified, they can be clustered and local boundary
lines are approximated. The whole clustering process is simply the 2D version of
Algorithm 1. 1 − |δ|/r serves as the confidence rate, and δT is used to prune out
points that are not close to the boundary. Points are equipped with normals, and
the plane equation of the cluster becomes line equation. The fitted line segments
are also computed from PCA.

Considering efficiency, we need a fast way to collect points within r-distance to
point q. kd-tree [5] is the most appropriate data structure that properly supports
distance queries. A further improvement is to quickly identify and ignore the points
that are not close to the boundary. See Figure 3(c). We first discretize the plane
into cells of size r× r. Points lying inside a cell whose 8-neighbors all contain data
points are pruned out. For each surviving point q, we collect points from only the
cell that q lies in and its 8-neighbors. These points go through a further check to
see if they are within r-distance to q.

Algorithm 2 summarizes the details.
Unfortunately due to occlusion and scanning quality, not every cluster has a clear

boundary. Some boundary lines are hard to infer. Moreover, special structures of
each face, such as glass windows and doors, present fake boundaries. See Figure 4.
Adding more carefully planned scans can potentially give a better outer boundary
inference, but inner boundaries are largely unavoidable. It is not safe to assume
that all lines computed from Algorithm 2 serve as real boundaries of the cluster,
otherwise missing planes could be automatically recovered by selecting coplanar
lines. This necessitates the next section that discusses manual repair of missing
planes and intersections.

4.2 Recovering All Planes and Intersections

We utilize the boundary line segments output from Algorithm 2 to infer faces that
have not been captured by the scanner, and specify all the non-detected intersec-
tions. For each missing plane, the user picks at least two boundary line segments
and fits a plane to the end points of them. She can further indicate the missing
intersection lines by choosing pairs of planes. A complete set of planes and their

8

Algorithm 2 Boundary Detection for A Cluster
1: Project the cluster C onto its representative plane P . Denote the new set of

points Q.
2: Discretize the plane into cells of size r × r.
3: Find all cells whose 8-neighbors all contain points in Q. Denote the union of

these cells C.
4: Initialize Q′ ← ∅
5: for all q ∈ Q and q /∈ C do
6: Collect points from the cell that q lies in and its 8-neighbors.
7: Prune out points whose distance to q is greater than r. Denote the surviving

set Uq.
8: for all ui ∈ Uq do
9: ūi ← ui − q. ūi ← ūi/‖ūi‖.

10: end for
11: nq ← −∑

ūi. nq ← nq/‖nq‖.
12: δq ← mini{−(ui − q) · nq}
13: κq ← 1− |δq|/r
14: if δq ≥ δT then
15: Q′ ← Q′ ∪ {q}
16: end if
17: end for
18: Cluster points in Q′ in a way similar to Algorithm 1. Use normal nq and

confidence rate κq for each q ∈ Q′. Fit a line segment to each cluster. Return
all the computed line segments.

neighboring information is necessary before we proceed to construct the target poly-
hedron.

5 Constructing the Polyhedron

In this section, we describe an algorithm that reconstructs a polyhedron given all
faces and edges, by way of its dual. Then we relax the restriction and introduce
another way of solving the polyhedron, if only the planes and lines that its faces and
edges reside on are given. Iterative user interaction is needed to resolve ambiguous
situations, but such effort is minimal.

5.1 Dual Polyhedron

Every polyhedron G is associated with its dual G∗, where each vertex corresponds
to a face of the other. There’s an edge connecting two vertices in G∗ if and only if
the two corresponding faces share an edge in G. Steinitz’s Theorem (1922) reveals
the isomorphism between a polyhedron and a 3-connected planar graph [11].

The nice duality produces a neat algorithm to reconstruct the polyhedral model
from its dual. Given the faces and edges, we form a planar graph by using vertices
to represent the faces and connect a pair of vertices if the two faces have an inter-
section edge. Each region of the planar graph corresponds to a vertex corner in the

9

(a) Incomplete data that
misses partial boundary.

(b) Fake boundary lines
caused by windows.

(c) A cluster ambiguously
split into two parts.

Figure 4: Boundary detection results for different clusters.

polyhedral model. By tracing all the regions in the graph, all the corners of the
target polyhedron are computed and hence the model is clear.

(a) A u-shape polyhe-
dron.

b b b b b b b b

b

b

(b) Its dual polyhedron embed-
ded to plane.

b b b b b b b

b

b

(c) Two red vertices in (b)
are collapsed into one.

Figure 5: A u-shape polyhedron where two of its faces (red) are coplanar. Its dual has a
planar graph embedding. But if the two faces are considered as one whole plane, its ‘dual’
graph as shown in (c) cannot be planar.

This appealing algorithm fails for the case that several separate faces fall on the
the same fitted plane, and/or different edges rest on the same computed intersection
line. See Figure 5 for an example. As can be seen from the previous Figure 4(c),
due to scanning quality, it is very difficult to tell whether a cluster represents a
single face or several. We state the following fact that prompts other more robust
approaches to constructing the final shape.

Building Structure. Some separate faces of a building may be (nearly) coplanar,
and more than one edge may lie on the same line. By observation, most corners of
a building are incident to exactly three faces.

5.2 Cluster Graph

We introduce the term cluster graph in a similar sense to the dual polyhedron. Each
vertex in the cluster graph G+ represents a cluster of the scanned data. Since each
cluster is fitted by a plane, we also say that each vertex represents a plane of the
model. There’s an edge in G+ connecting a pair of vertices if the two representative
planes share an intersection line.

The cluster graph for a plane P , denoted G+
P , is a subgraph of G+. G+

P consists
of all the vertices representing the neighboring planes of P and all original edges in

10

G+ that connect these vertices. Figure 6(a) shows an example case that is common.

b

b b

b

bb

(a) G+
α

v1

v2

b

b

b

b

(b) G+
β

b

b

b

b

(c)

b

b

b

b

b b

b

(d) G+
γ

Figure 6: The cluster graphs G+
P for different planes P . For plane labels, see Figure 7(a).

(a) is the cluster graph for the plane α. Hamiltonian circuit (colored in blue) is found.
(b) is the cluster graph for the plane β. After a pseudo edge is added (as in (c)), the
Hamiltonian circuit is also found. (d) is the cluster graph for the plane γ. It does not have
a Hamiltonian circuit.

For the simplest case, a corner in the polyhedral model is the intersection of
three planes: P and two of P ’s neighbors. By traversing the corners on one face
of the target polyhedron, in G+

P it equivalently means that we are walking a cycle
passing through all the vertices where each pair of consecutive vertices represents
two of P ’s neighbors that together with P form a corner in the polyhedron.

A corner need not be the intersection of only three planes. Figure 6(b) shows
an example case of what G+

P looks like if there’s a corner being the intersection of
four planes. The two planes represented by v1 and v2 are intercepted by a fourth
plane that does not share a line with P . All these four planes intersect to form a
corner. It is sufficient to add a pseudo edge connecting v1 and v2 as in Figure 6(c),
and traversing the corners of the face is equivalent to traversing the blue circuit.

The above observation gives an algorithm to tracing out most of the faces of the
polyhedral model. For a plane P , a cluster graph G+

P related to all P ’s neighbors is
formed. In case two vertices in G+

P do not represent two planes that intersect on a
line, but they are part of the set of planes (including P) that intersect at a corner,
we add a pseudo edge connecting these two vertices. (How this corner is known
beforehand will be discussed later in Section 5.4.) If there exists a Hamiltonian
circuit (HC) on G+

P , then for every pair of consecutive vertices on the circuit, the
planes they represent together with P intersect at a corner. By traversing the circuit
a sequence of corners are computed, where they define the unique polygonal face
that lies on plane P .

Finding the Hamiltonian circuit is an NP-complete problem, but there exist
many heuristic low-exponential polynomial time algorithms, e.g. [7], which meet
the interactive time requirement, for graphs that are not large. In practice, many
of the vertices in G+

P are of degree 2 (a corner results from the intersection of only
three faces), which accelerates the finding of the circuit.

5.3 Polygonal Faces

A polygonal face can also be extracted from all its corners (order unknown) and lines
passing through them, provided that the polygon is simple and no three consecutive
corners are collinear, which is fulfilled in our situation. The given lines should be

11

where the actual edges potentially lie on, and no redundant lines are presented. See
Figure 7(b) for an example.

α

βγ

γ

λ

(a) The target polyhedron.

b b

b b

b b

bb

bb

b

b

(b) The polygonal face λ. The vertices
and blue dotted lines are used as input
to trace the polygon.

Figure 7: The target polyhedron (same as the one in Figure 1(f)) and its polygonal faces.
Labels α, β and γ are used by Figure 6. Plane γ also appears in the next Figure 8.

b b

bb

b b

bb

(a) The polygonal
faces lying on plane
γ, Figure 7(a).

b b

b b

b b

b b

b b

b b

b b

bb

bb

b b

bb

b b

bb

(b) A face having holes. This is a
real face from the model in Figure 9.

Figure 8: Illustrations of faces that consist of multiple polygons.

Given a line lP1P2 that is the intersection of P1 and P2, if there are n polygon
edges lying on it, then there are exactly 2n corners related to the plane intersection
of P1, P2 and their common neighbors. Let the corners be w1, w2, w3, . . . , w2n, in
increasing-x (or y) order. The segments [w1, w2], [w3, w4], . . ., [w2n−1, w2n] define
these n edges. Extracting such edges for all the intersection lines that lie on plane
P , we have the exact contour of the face on P . Note that the corners w1 . . . w2n are
not defined in a geometric sense, hence there may be some corners coincidentally
falling on the line lP1P2 but they are not caused by the intersection of P1 and P2.

This method has the capability of solving general cases, such as:

• Several mutually exclusive faces fall on the same plane. Figure 8(a) illustrates
an example, where two polygons fall on the same plane γ.

• Faces are not simply connected, i.e, having holes. Note that these holes are
different from the window boundaries as shown in Figure 4(b); they are the
concave or convex part of the building geometry. See Figure 8(b) for an
example.

12

5.4 Interaction Feedback

To one extreme, we could let the user manually specify all the corners and throw
them into the previous algorithm to compute all the polygonal faces. But to alleviate
the burden on the user, we exploit the power of cluster graphs as introduced in
Section 5.2 and design a user interaction loop to complete the target polyhedron in
a most convenient way.

It’s not difficult to see that the Hamiltonian circuit of G+
P (after pseudo edges

are added) exists if and only if there’s only one face resting on plane P and no two
edges lying on the same plane intersection line. (This equivalently means that G+

P

is connected and the circuit does not pass a vertex more than once.) This condition
is the most common situation that can be utilized.

We first compute for the user a set of potential locations that actual corners
may stand at, then enter the interaction loop. We compute those faces that have
a Hamiltonian circuit and expose computed corners. After the user specifies some
additional corners, especially those resulting from the intersection of more than
three planes, we attempt to compute Hamiltonian circuits for the rest of the clusters.
This loops until no more planes have a potential Hamiltonian circuit. Then the user
has to pick out all the remaining corners and the algorithm in Section 5.3 is run to
construct all remaining nonextracted faces.

Note that a Hamiltonian circuit can be traversed in two opposite directions.
Hence the listing order of corners for each face of the polyhedron may need to be
reversed so as to conform to the orientation of the face. Algorithm 3 gives the
detailed steps of this interactive procedure.

6 Results

Figure 9(a) shows the model reconstruction of the Phillips Wangensteen Building,
which is located at the University of Minnesota, Twin Cities Campus. The scanned
data consists of about 2.5 million points registered from seven scans. Note the large
portion of data missing from the top and sides. 15% of the data has confidence
rate higher than 0.9. The clustering and boundary detection are handled in pre-
processing and consume about two minutes. The final reconstructed polyhedron
contains 82 faces, 234 edges, 156 vertices and 2 holes.

(a) Scanned data. (b) Points with at least 0.9
confidence

(c) The reconstructed polyhe-
dron.

Figure 9: A typical scanned building and its reconstructed model.

13

Algorithm 3 Reconstructing the Polyhedral Model
1: Initialize corner list V ← ∅
2: for all planes Pi do
3: Mark Pi undone
4: end for
5: repeat
6: for all planes Pi that are undone do
7: Form cluster graph G+

Pi

8: Add pseudo edges if existing, according to corner list V
9: if HC(G+

Pi
) exists then

10: Trace out the polygonal face lying on plane Pi

11: Add new computed corners to the corner list V
12: Mark Pi done
13: end if
14: end for
15: Receive user input of new corners
16: until no new Pi is marked done
17: repeat
18: Receive user input of new corners
19: until all corners of the target polyhedron are in corner list V
20: for all planes Pi that are undone do
21: From V , get all corners being the intersection of Pi are other planes
22: Get all intersection lines that lie on plane Pi

23: Trace out all polygonal faces lying on plane Pi

24: end for
25: for all planes Pi that are are fitted from scanned data do
26: Adjust the listing order of corners according to Pi’s orientation
27: end for
28: for all planes Pi that have no scanned data attached to do
29: Adjust the listing order of corners according to other polygons
30: end for

The scanned model in Figure 1(a) illustrates the applicability of our pipeline to
reconstruct arbitrarily shaped buildings. Many of its faces/edges are not parallel
to any of the three principal axes of the object coordinate system. It is also diffi-
cult to construct from parametric primitives such as cuboid, prism or tetrahedron.
Figure 10(b) shows the textured model.

7 Conclusions and Future Work

We have proposed a new representation of large-scale architectures—polyhedra, as
well as a pipeline achieving this model representation from deficient range scanned
data. A bounded polyhedron with low complexity is capable of representing a
wide range of architectures whose faces exhibit planarity. This representation is
suitable for modeling from noisy range data that contains large portions of missing
or invalid values due to scanning constraints and limitation of the scanner accuracy.

14

(a) (b)

Figure 10: The texture-mapped model corresponding to the dataset in Figure 1. (a) is the
photo of the McNamara Alumni Center, University of Minnesota. (b) shows two different
views of the reconstructed model.

Our approach combines high-level automatic computations and an efficient user
interface, and is proven to be effective through our experiments.

Within our processing pipeline, clustering of the scanned data based on normals
and point locations is first executed. We introduce the concept of confidence rate in
guiding the process of clustering and identifying planar regions. We also propose a
boundary detection algorithm so as to compute the piecewise linear boundary of a
cluster of 3D points that are close to a plane. The algorithm effectively recognizes
boundary points and clusters them into linear segments. Finally, we use cluster
graph, sharing some spirit with dual polyhedron, to extract bounded faces of the
polyhedron. This involves finding Hamiltonian circuits; because of the low com-
plexity of the target polyhedron the circuits can be computed efficiently.

When geometry loss or ambiguity becomes unresolvable by the computer, the
modeling process is facilitated by a simple user interface which simply asks the
user to make a selection from computed options. For example, to specify a missing
plane, the user only needs to select two computed boundary line segments; to define
a missing edge, she selects two incident planes; to confirm a corner, she only clicks
within its approximate location. This interface accelerates the modeling process
while yielding more accuracy.

There are many avenues of future research to improve the existing modeling
pipeline. There are a number of implicit parameters, such as confidence rate thresh-
old κT , cluster size threshold NT , normal parallelism threshold pT , orthogonality
threshold oT , etc, which need to be fine-tuned according to different datasets. How
to automatically adjust them based on the scanning setup, e.g., scanning density,
scanner distance, data quality feedback, object occlusions, etc, is an important
component of improving process automation.

The boundary detection algorithm is based on the assumption of planarity of the
geometry and piecewise linearity of the boundary. Some inner boundaries (see Fig-
ure 4(b)) are not the real edges of the polyhedral model and may interfere with the

15

modeling process. By exploiting more knowledge or designing more sophisticated
algorithms we expect to improve the accuracy of boundary extraction.

More fundamentally, we plan to relax the basic planarity assumption to accom-
modate non-planar shapes, such as spherical, cylindrical and other parameterized
curved patches. We will also expand the current user interface accordingly.

References

[1] The digital Michelangelo project. http://graphics.stanford.edu/papers/
dmich-sig00/.

[2] MIT city scanning project. http://city.csail.mit.edu/.

[3] The Pietà project. http://www.research.ibm.com/pieta/.

[4] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition, 13(2):111–122, 1981.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[6] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Vi-
sualization and Computer Graphics, 5(4):349–359, 1999.

[7] F. A. Brunacci. DB2 and DB2A: Two useful tools for constructing Hamiltonian
circuits. European Journal of Operational Research, 34:231–236, 1988.

[8] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and ren-
dering architecture from photographs: a hybrid geometry- and image-based
approach. In Proceedings of SIGGRAPH 96, 1996.

[9] R. Fisher. Solving architectural modelling problems using knowledge. In Pro-
ceedings of 4th International Conference on 3D Digital Imaging and Modelling,
2003.

[10] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust mov-
ing least-squares fitting with sharp features. ACM Transactions on Graphics,
24(3):544–552, 2005.

[11] Branko Grünbaum. Convex Polytopes. Wiley, London, 1967.

[12] Xiaoyi Jiang and Horst Bunke. Edge detection in range images based on scan
line approximation. Computer Vision and Image Understanding, 73(2):183–
199, 1999.

[13] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project: 3D scan-
ning of large statues. In Proceedings of SIGGRAPH 00, 2000.

16

[14] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and Leonidas J.
Guibas. Example-based 3d scan completion. In Eurographics Symposium on
Geometry Processing, July 2005.

[15] Joshua Podolak and Szymon Rusinkiewicz. Atomic volumes for mesh comple-
tion. In Eurographics Symposium on Geometry Processing, July 2005.

[16] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface com-
pletion. ACM Transactions on Graphics, 23(3):878–887, 2004.

[17] Heung-Yeung Shum, Mei Han, and Rick Szeliski. Interactive construction of
3D models from panoramic mosaic. In Proceedings of CVPR 98, 1998.

[18] Hui Xu and Baoquan Chen. Stylized rendering of 3D scanned real world
environments. In Proceedings of the 3rd International Symposium on Non-
Photorealistic Animation and Rendering, 2004.

[19] D. Ziou and S. Tabbone. Edge detection techniques - an overview. International
Journal of Pattern Recognition and Image Analysis, 8:537–559, 1998.

17

