
PointWorks: Abstraction and Rendering of Sparsely Scanned

Outdoor Environments

Hui Xu, Nathan Gossett and Baoquan Chen

University of Minnesota Digital Technology Center at Twin Cities †

Abstract

This paper describes a system, dubbed PointWorks, for rendering three-dimensionally digitized outdoor environ-

ments in non-photorealistic rendering styles. The difficulty in rendering outdoor environments is accommodating

their inaccuracy, incompleteness, and large size to deliver a smooth animation without suggesting the underly-

ing data deficiency. The key method discussed in this paper is employing artistic drawing techniques to illustrate

features of varying importance and accuracy.

We employ a point-based representation of the scanned environment and operate directly on point-based models

for abstraction and rendering. We develop a framework for producing mainly two artistic styles: painterly and

profile lines. The framework first analyzes the input point models and performs a fuzzy classification. These

points are then taken as stroke candidates during the rendering. At run time, a subset of points are selected view-

dependently and strokes of various geometry and styles are placed at these points’ screen positions. By varying the

run-time stroke selection scheme and individual stroke rendering, various looks can be achieved. Strategies have

also been employed to leverage modern graphics hardware for achieving interactive rendering of large scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

Digitizing and scanning

1. Introduction

Capturing and animating real-world objects and scenes has

attracted increasing research interest. To offer unconstrained

navigation of the scenes, 3D representations are first needed.

Advances in laser scanning technology are making this 3D

acquisition feasible for objects of ever larger scales. The

aim of the methods described in this paper is to scan out-

door environments and deliver interactive walk-throughs of

them. Outdoor environment scans demonstrate the follow-

ing properties: (1) incompleteness – a complete scan of ev-

ery object in the environment is impossible to obtain due

to the usual obstructions caused by intervening objects, and

the constrained accessibility of the scanner; (2) complexity –

natural objects, such as trees and plants are complex in terms

of their geometric shapes; (3) inaccuracy – distant objects

are less accurate due to scanning hardware limitations, and

† Email:{hxu, gossett, baoquan}@cs.umn.edu

plants and trees can be moved by wind during the scanning

process; and (4) large data size. A conventional rendering of

such a scan is shown in Figure 1, in which holes and noise

are apparent.

These properties raise unprecedented challenges for exist-

ing methods, as most of them have been focused on gener-

ating a complete polygon mesh from points. With the afore-

mentioned data properties of outdoor scans, fitting a com-

plete polygon mesh is a daunting task. Certain heuristics

or even manual controls have to be specified to smooth out

noise and patch up holes, which can be a tedious and even

prohibitive process. Moreover, a fundamental problem of

this approach is that such polygon meshes remove all the

uncertainties and holes existing in the original data. Thus,

renderings of these models provide a false impression of the

models’ accuracy.

In this paper, we opt to generate animations of outdoor

scenes using artistic illustration, or non-photorealistic ren-

dering (NPR). Artistic illustration, unlike traditional photo-



H. Xu & N. Gossett & B. Chen / PointWorks

realistic rendering, can aesthetically depict objects of dif-

ferent importance by using different accuracy and drawing

styles [SPR∗94]. Once a scene is depicted in these artistic

styles, a viewer’s expectations of scene accuracy are auto-

matically reduced. Therefore, missing details, whether large

or small holes, become less noticeable. Moreover, even for a

situation with accurate geometry, artistic illustration can still

be more desirable. This is evident for many applications such

as architectural design, where a certain level of abstraction

better conveys the essence of the scene.

Our goal in this paper is to develop algorithms to generate

several non-photorealistic rendering (NPR) styles directly

from point-based representations. During the NPR render-

ing, the level of abstraction is determined not only by the

geometric and color features but also the scanning accuracy.

In our recent work, we have experimented with generating

sketchy NPR styles (mainly in a pen-and-ink style using

short strokes) based on scanned point clouds [XC04]. Here

we develop algorithms for generating painterly styles and

more abstract styles like profile lines. Most importantly, we

devise a unified framework for creating intermingled styles.

Once this generalized framework has been developed, many

additional styles can be created by mixing various styles

in the same scene. For all these styles, smooth animation

and a consistent NPR quality (e.g., stroke coherence and

stroke density consistency) are guaranteed during naviga-

tion. Lastly, we have mapped our algorithms onto readily

available commodity graphics hardware to leverage the lat-

est vertex and pixel programming features to provide an in-

teractive navigation experience.

We have developed a prototype system, dubbed Point-

Works, that conducts all the necessary operations involved

in preprocessing scanned data before they are sent for NPR

rendering. The rest of the paper is organized as follows. Af-

ter a brief discussion of the state-of-the-art of NPR (Section

2), we introduce our previous work (Section 3) as a precursor

to the work of this paper. We then present in more detail two

illustration styles, painterly and profile lines in Section 4. Fi-

nally, we discuss implementation details and present results

(Section 5). We conclude with discussions and our plans for

future work (Section 6).

2. Prior Art

Our system builds on top of existing developments in non-

photorealistic rendering. Previous researchers have extracted

principles employed by artists for guiding computer-based

art simulation. Winkenbach and Salesin [WS94] and Salis-

bury et al. [SABS94] have summarized principles for gener-

ating pen-and-ink art styles. Meier [Mei96] has presented a

framework for painterly rendering of 3D objects. Litwinow-

icz [Lit97] and Hertzman [Her98] further presented a frame-

work for image-based painterly rendering. Although differ-

ent groups of methods can generate distinctive artistic styles,

these approaches can be generally classified as stroke-based

Figure 1: An attempted standard point-based rendering of

scanned data. Holes and noise due to lack of data are ap-

parent. This scene is a detail from the scene depicted in the

top image of Figure 5, which is rendered in a painterly style.

non-photorealistic rendering [Her03] where images are con-

structed by discretely placing and depicting strokes on a vir-

tual canvas.

The looks of individual strokes strongly reflect the in-

teraction between the media, the drawing tools, and the

artist creating a work. Methods have been developed to per-

form physics-based simulations for effects such as water-

color [CAS∗97], calligraphy [Guo96], and pencil drawing

[SB99]. Gooch et al. [GGSC98] also developed a lighting

model used in artistic illustration.

For animated NPR, an important issue is consistency.

Meier [Mei96] proposed a method that associates strokes

with particles defined on the surface of objects. Since the

strokes are associated with actual locations in space, they

move smoothly across the screen in a consistent manner as

the viewpoint shifts. Another issue for animation is main-

taining a constant screen-space density of strokes. Too many

or too few strokes can create a cluttered effect or fail to

convey the underlying shape, respectively. In styles such

as pen-and-ink drawing, stroke density also controls tone

[SWHS97, WS94]. Simply associating strokes with screen-

space increases particle density as objects recede into the

distance. Thus, an adaptive way of changing the density

of the particles according to object distance is desirable

[CRL01].

Existing NPR methods assume a complete polygon model

as a starting point. There has not been much work on con-

ducting NPR rendering directly from point-based repre-

sentations, and the existing work in point-based rendering

strives for photorealism with high-quality and/or efficiency

[PZvG00, RL00]. The main challenge in performing NPR

rendering from scanned point clouds is the inherent inac-



H. Xu & N. Gossett & B. Chen / PointWorks

curacy, incompleteness, and inconsistent sampling rate of

the data (Figure 1). The authors of this paper have recently

published a paper on generating some sketchy NPR styles

(mainly pen-and-ink and stippling) based on scanned point

clouds [XC04]. Independently, Pauly et al. [PKG03] have

also proposed methods for extracting outline features from

point models that can be used for NPR rendering. While

Pauly’s method favors a dense and complete point set, our

work explicitly addresses the extreme non-uniformity and

inaccuracy existing in real-world outdoor scans.

3. Our Previous Work

To set the stage for our discussion of new NPR style gener-

ation, we summarize our prior work of generating sketchy

NPR styles [XC04]. First, outdoor environments are ac-

quired through laser scanning using Riegl Inc’s LMS-Z360

3D imaging sensor. The first line of processing is to obtain

a separate point model for each individual object, such as

a building, building wall or tree, by merging multiple scans

from different scanning positions.

After point-based models are obtained, each point is fur-

ther classified through a fuzzy classification as either a di-

rectional feature point (on an object’s geometry or ap-

pearance boundaries with consistent local orientation), non-

directional feature point (feature points without consistent

local orientation), or non-feature point (the rest). Once this

classification is achieved, points of different classification

are depicted using strokes of various styles. While the di-

rectional feature points are usually drawn using line seg-

ments or textured strokes with their orientation guided by the

point’s direction, the non-directional points are drawn using

strokes of uniform direction (pre-determined) or isotropic

strokes such as circular point sprites. To illustrate an object’s

shading tone, a subset of the non-feature points are also de-

picted, using strokes similar to those of non-directional fea-

ture points. These points are selected through a conventional

dithering operation. The left building in the bottom image of

Figure 5 is depicted in this style.

Rendering a subset of points will not guarantee correct

visibility; background objects may leak through the fore-

ground objects. To address this issue, each image is ren-

dered in two passes. The first pass aims to generates a vis-

ibility mask, in which points are rendered as opaque discs

[PZvG00]. The second pass projects selected points, deter-

mines their visibility according to the visibility mask, and

then places strokes at the visible points. The stroke style,

choice of rendering points, and choice of rendering order de-

termines the style of the image.

To address the animation consistency issue, a data struc-

ture called a continuous resolution queue has been used to

easily control the density of points on the screen and to en-

sure coherence between frames. In this data structure, points

of each object are randomly reordered into a linear queue.

During the rendering, the projected screen area of each ob-

ject determines the number of points used for the second

pass rendering (stroke placement). The point set is always

retrieved from the beginning of the queue. Others have used

similar data structures in point-based rendering for different

purpose [DVS03].

4. New NPR Rendering Styles

We adopt the same two-pass rendering pipeline as in the

sketchy NPR rendering for generating new styles, mainly

painterly, long profile lines, and the intermingling of mul-

tiple styles. We also leverage the point classification and

the continuous resolution queue data structure. In this sec-

tion, we discuss new operations in the second rendering pass

for generating our new styles. Due to our use of a shared

pipeline and data structures, different styles can be intermin-

gled together in one single scene.

4.1. Painterly Rendering

One of the styles we can produce with our framework is

painterly rendering. The basic strategy we use to render im-

ages in such a style is to first render coarse details as large

brush strokes, and then finer details as smaller brush strokes.

We make use of a fuzzy classification based on the feature

degree (Section 3) to identify points representing finer and

coarser details (Figure 2).

The straightforward approach to implementing the itera-

tive process would be to use a single classification of points

for each stroke size. We discovered, however, that we were

able to obtain better coverage by using points with a wide

variety of feature degrees to produce large brush strokes. We

then gradually shift to using only the highest feature degree

points for the smaller strokes. For example, the crown of a

tree will consist mostly of high feature degree points. If we

were to use only low feature degree points for the foundation

layer of large brush strokes, the crown of the tree would con-

sist only of small strokes. Obtaining proper coverage for the

whole iteration process means that the high feature degree

points get reused many times.

To take advantage of this reuse, we classify all points

by feature degree, but do not use any immediate threshold

to differentiate between feature and non-feature points. We

sort the points from low to high feature degree and divide

the list evenly into bins. Each bin is then randomly ordered

and placed in a continuous resolution queue. We reuse these

queues for the entire process rather than maintaining a sepa-

rate point list for each iteration.

The number of iterations is the same as the number of

bins, but recall that each iteration does not use only one bin

of points. Instead, the first iteration uses all of the bins, and

each subsequent iteration uses one less bin until the last iter-

ation, which uses only the bin with the highest feature degree



H. Xu & N. Gossett & B. Chen / PointWorks

Figure 2: The Painterly Rendering Pipeline. Scanned points are divided into bins based on feature degree. The bins are then

used to produce iterations with decreasing brush size.

points. The number of points rendered from each bin will be

based on the calculated screen coverage of each object so

that the density of points on the screen will remain consis-

tent. Figure 2 illustrates the iteration process.

Note that since our bins are continuous resolution queues,

the same high feature degree points that are used in early

iterations are also used in later iterations. Each successive it-

eration will use more points from the bins that are left, so the

queues will deliver the same points as the previous iteration,

plus some additional points.

4.2. Enhancement of Painterly Rendering

Some points are used in multiple iterations, and thus will

be drawn with strokes of different sizes, and will therefore

illustrate different geometrical coverages. In order to main-

tain reasonable color transitions between strokes, we cannot

simply use the color of a single point to determine the color

of a stroke. Instead, for each brush stroke we locate all points

in its coverage and interpolate their colors.

Our scanned data contains no points for parts of the en-

vironment that were outside the scanning range (notably the

sky), so we use a simple sky box to produce an appropriate

background image (a sky and generic ground color) behind

the objects in the scene.

Since the first few iterations use large brush strokes, a

problem arises where brush stokes extend beyond the bor-

ders of the objects they are meant to represent. In places

where other, smaller brush strokes will be placed in later it-

erations, this is not a problem. The later brush strokes will

simply cover up any out-of-bounds drawing from earlier it-

erations. Our randomized drawing order produces a natural

painterly look. There are no points for the background, how-

ever, so any brush strokes mistakenly placed above the sky-

line, for instance, will not be covered up. To solve this prob-

lem, we generate a stencil mask during the first (visibility)

pass of rendering. We then enable the stencil test for the first

few iterations to prevent large brush strokes from covering

up the background. The stencil test is then disabled for the

smaller brush strokes to permit some minor out-of-bounds

drawing. This prevents the skyline from being too clean of

an edge. The results of this operation can be seen by com-

paring the left and middle images in Figure 3.

In many cases, placing extra emphasis on directional fea-

ture edges can aid in creating detailed structure for an im-

age. By taking only the directional feature points from the

sketchy rendering style, we can enhance the detail of a

painterly style image by placing directional strokes on top of

the finished painting. The color of these directional strokes

can either be taken from the point colors (seen in the right

image of Figure 3), or any user specified color (black direc-

tional strokes can be seen in the bottom image of Figure 5).

Alternately, profile lines may be used for slightly smoother

lines.



H. Xu & N. Gossett & B. Chen / PointWorks

Figure 3: Painterly Refinement. A painterly rendering without (left) and with (middle) the stencil mask. Note the improvement

along the skyline. An additional iteration using very thin directional strokes is also shown (right). Note the presence of edge

features such as individual stones in the bridge.

Figure 4: Profile Line Estimation. (Top) An extreme close

up of the directional points from a scan. The vertical line

is the bottom of a flagpole that sits on top of a building. The

points shown are all of the directional points recorded by the

scanner and classified by our method. (Bottom) Profile lines

fitted to the available points.

4.3. Profile Lines

Images generated in the standard sketchy rendering pipeline

contain many disconnected strokes. Using longer connected

strokes, however, can achieve a higher degree of abstraction.

Object profiles are obtained by processing directional fea-

ture points. Each directional point D0 is connected to all di-

rectional points in D0’s neighborhood, forming connected

graphs. The 3D location of each directional point is then

shifted in the direction of any point it is connected to as a

preliminary smoothing step. Similar to the use of Tokens in

[GCS02], any points located within a certain distance of each

other are combined into a single point. Each graph is then ex-

panded into a fully connected graph. A Minimum Spanning

Tree (MST) is constructed for each graph, with 3D distance

and edge direction determining the weight for each potential

edge. The 3D shift and point combination in the previous

step significantly aids in constructing MSTs that accurately

describe smooth edges. These MSTs are then used as an es-

timate of each object’s abstract form.

As a final step, B-splines are used to create a smoother

appearance. In addition to the normal smoothing associ-

ated with B-splines, another smoothing pass is made along

each spline path, shifting point positions to eliminate high-

frequency deviations. Branching points are not allowed to

shift, thereby preserving proper connectivity. The numerous

smoothing steps we apply produce satisfactory results, as

seen in Figure 4. As an alternative, [PKG03] suggests the

use of snakes as opposed to splines for creating smooth pro-

file lines. The bottom image of Figure 5 demonstrates the

clean appearance of profile lines for the trees, bushes and

ground. The profile lines are constructed as a pre-processing

step. These profiles exist as 3D structures rather than being

constructed as 2D lines in image space.

4.4. Intermingled Styles

It is also possible for us to intermingle different styles within

the same image. By choosing different styles for various ob-

jects, we can cause some to stand out, while others recede

into the background. The bottom image of Figure 5 demon-

strates this ability to visually distinguish objects within a

complex scene. Our unified framework allows us to adjust

styles on the fly.

5. Implementations and Results

We have implemented our NPR system using DirectX 9.0

on the nVidia GeForce FX 5800 graphics card with 128MB

video memory. Our test PC has a 2.4GHz Pentium 4 proces-

sor, 1GB of main memory, and runs Windows XP.

In order to achieve interactive rendering of large point

clouds, we seek a tight coupling of the CPU and GPU

and leverage custom vertex shaders. The key run-time im-

plementation of our NPR pipeline is the realization of the

continuous resolution queue data structure. The randomized



H. Xu & N. Gossett & B. Chen / PointWorks

feature point set is stored in vertex buffers residing in the

video memory. The CPU is used to determine the number

of strokes to be placed, based on a predefined density value

and the object screen coverage area. Buildings are usually

segmented so that each wall is a separate object in order to

achieve accurate coverage estimates. Then, the GPU is used

to retrieve the requested number of points from the vertex

buffer starting from the beginning of the queue.

An additional implementation detail addresses the re-

trieval of point color in painterly rendering. Recall that the

same point may be used in multiple iterations, and each

point has multiple colors stored for brush strokes of different

sizes. For storage efficiency, multiple colors are compacted

together before being sent to the vertex buffer. A vertex pro-

gram retrieves the right color for each point according to the

current iteration.

Figure 5 demonstrates several representative artistic styles

that our system is capable of generating. The top image

represents a painterly style enhanced by colored direc-

tional edge strokes. The sky background is simply generated

through a sky box, and is not stylized. Compared with the

image of the same scene generated using photorealism (Fig-

ure 1), this artistically rendered image has gracefully masked

out data deficiencies such as holes and noise that existed in

the original point data.

The bottom image of Figure 5 illustrates our system’s

capability in adjusting different styles for different objects

within a single scene. Here, user-specified non-essential ob-

jects such as trees, bushes, and ground are depicted using

long profile lines. The two buildings in the environment are

drawn with greater detail. Pen-and-ink and painterly styles

are used for the left and right building, respectively. In

the pen-and-ink rendering, directional, non-directional, and

non-feature points are used for depiction. In the painterly

rendering, thick black directional strokes are overlaid on top

of the standard painterly rendering to highlight the edge fea-

tures.

Also, as shown in the companion video, our system pro-

duces smooth animation thanks mainly to our continuous

resolution queue data structure.

Lastly, we show the rendering efficiency of our system in

Table 1. In Table 1(a), the performance is evaluated while

navigating through the top scene shown in Figure 5. Three

representative frame rates are reported. Table 1(b) reports

the typical performance for the bottom scene in Figure 5 and

then breaks down to the rendering of objects with different

styles. This table shows that our system offers interactivity

at comfortable rates when exploring large outdoor environ-

ments. This interactivity is achieved by efficient utilization

of commodity graphics hardware, and our avoidance of ex-

pensive operations such as the point sorting steps used in

other approaches [Mei96].

Table 1: Rendering performance

(Image resolution 800× 600, 6 iterations used for painterly

rendering).

N: the number of points in the scene;

N f : the number of points actually rendered in the first pass

(after applying view frustum culling and continuous resolu-

tion queue);

Np: the total number of points rendered for all painterly it-

erations in the second pass;

Nl: the number of splines rendered for the profile;

Ns: the number of points rendered for the sketchy object.

First Pass Second Pass

N N f Np FPS

669K 1,103K 10

1,294K 613K 1,012K 11

584K 975K 12

(a) The top scene in Figure 5.

First Pass Second Pass

N N f Nl Ns Np FPS

1,391K 707K 104K 20K 61K 31

(b) The bottom scene in Figure 5.

6. Conclusions and Future Work

We have presented a framework for rendering sparsely

scanned outdoor environments. By using NPR styles, we

are able to reduce the effects of missing or incomplete data.

Our framework produces coherent animations in a variety of

styles. We are able to offer interactive navigation of scenes

using any of these styles on commodity graphics hardware.

For outdoor scanning, obtaining an accurate and complete

geometry is infeasible. As evident from our rendering, styl-

ized rendering can gracefully mask out data deficiency. Our

system’s ability to vary artistic styles allows users to have

more control over scene depiction and interpretation. We be-

lieve this capability can be empowering and can find appli-

cations in various domains. We are encouraged by our early

dialogues with architects regarding the use of our technique

to visualize new designs in existing environments. Our abil-

ity to assign different styles to different objects has been es-

pecially well received. In related work, we have also been

working on performing this stylization in a virtual reality

environment where a large area tracker and head mounted

display are used. Our system’s performance can cope with

the interactivity requirement of the VR system.

We have identified and begun several tasks to further en-



H. Xu & N. Gossett & B. Chen / PointWorks

Figure 5: Demonstration of different NPR styles rendered by PointWorks. Image resolution: 1600× 900. (Top) A painterly ren-

dering. Compared with Figure 1, this artistically rendered image is free of holes and gracefully masks out data deficiencies such

as noise and insufficient sampling. (Bottom) An image rendered using different styles for different objects: long profile lines for

trees and ground, pen-and-ink for the building at left, and painterly for the center building. In the painterly rendering, thick black

directional strokes are overlaid to highlight the edge features.



H. Xu & N. Gossett & B. Chen / PointWorks

hance our system. We aim to explore additional stylizations.

The established unified framework provides opportunities to

produce more combined styles. Along the same line of pur-

suit, we strive to conduct closer simulation of various artistic

media. We also plan to investigate the recovery of objects’

ambient color so that relighting can be conducted by adopt-

ing the method in another of our previous works [NXYC03].

Finally, as a more long-term but rewarding task, we plan to

further investigate the implications of employing artistic il-

lustration for data visualization. The evidence obtained for

the effectiveness of our system in this regard has been en-

couraging. At the moment, however, we feel the methods

applied in our system are based more on intuition than prin-

ciple. It is our earnest intent to discover principles that can

be used to guide both our system design and evaluation.

References

[BR02] BERNARDINI F., RUSHMEIER H.: The 3D model

acquisition pipeline. Computer Graphics Forum 21, 2

(2002), 149–172.

[CAS∗97] CURTIS C. J., ANDERSON S. E., SEIMS J. E.,

FLEISCHER K. W., SALESIN D. H.: Computer-generated

watercolor. In Proceedings of SIGGRAPH 97 (1997),

pp. 421–430.

[CRL01] CORNISH D., ROWAN A., LUEBKE D.: View-

dependent particles for interactive non-photorealistic ren-

dering. In Proceedings of Graphics Interface 2001

(2001), pp. 151–158.

[DS02] DECARLO D., SANTELLA A.: Stylization and ab-

straction of photographs. In Proceedings of SIGGRAPH

2002 (2002), pp. 769–776.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-

MINGER M.: Sequential point trees. ACM Trans. Graph.

22, 3 (2003), 657–662.

[GCS02] GOOCH B., COOMBE G., SHIRLEY P.: Artistic

vision: painterly rendering using computer vision tech-

niques. In Proceedings of the 2nd Annual Symposium

on Non-Photorealistic Animation and Rendering (2002),

pp. 83–90.

[GGSC98] GOOCH A., GOOCH B., SHIRLEY P., COHEN

E.: A non-photorealistic lighting model for automatic

technical illustration. In Proceedings of SIGGRAPH 98

(1998), pp. 447–452.

[Guo96] GUO Q.: Generating realistic calligraphy

words. IEICE Transactions on Fundamentals of Elec-

tronics Communications and Computer Sciences E78A,

11 (1996), 1556–1558.

[Her98] HERTZMANN A.: Painterly rendering with curved

brush strokes of multiple sizes. In Proceedings of SIG-

GRAPH 98 (1998), pp. 453–460.

[Her03] HERTZMANN A.: A survey of stroke-based ren-

dering. Computer Graphics and Applications, IEEE 23, 4

(2003), 70–81.

[KDMF03] KALNINS R. D., DAVIDSON P. L.,

MARKOSIAN L., FINKELSTEIN A.: Coherent styl-

ized silhouettes. ACM Trans. Graph. 22, 3 (2003),

856–861.

[Lit97] LITWINOWICZ P.: Processing images and video

for an impressionist effect. In Proceedings of ACM SIG-

GRAPH 97 (1997), pp. 407–414.

[LPC∗00] LEVOY M., PULLI K., CURLESS B.,

RUSINKIEWICZ S., KOLLER D., PEREIRA L., GINZTON

M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J.,

FULK D.: The digital michelangelo project: 3D scanning

of large statues. In Proceedings of ACM SIGGRAPH

2000 (2000), pp. 131–144.

[Mei96] MEIER B. J.: Painterly rendering for animation.

In Proceedings of ACM SIGGRAPH 96 (1996), pp. 477–

484.

[MKG∗97] MARKOSIAN L., KOWALSKI M. A., GOLD-

STEIN D., TRYCHIN S. J., HUGHES J. F., BOURDEV

L. D.: Real-time nonphotorealistic rendering. In Pro-

ceedings of ACM SIGGRAPH 97 (1997), pp. 415–420.

[NXYC03] NGUYEN M. X., XU H., YUAN X., CHEN

B.: Inspire: An interactive image assisted non-

photorealistic rendering system. In Pacific Graphics

(2003), pp. 472–476.

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-scale

feature extraction on point-sampled surfaces. Eurograph-

ics 2003 22, 3 (2003).

[PZvG00] PFISTER H., ZWICKER M., VAN BAAR J.,

GROSS M.: Surfels: surface elements as rendering prim-

itives. In Proceedings of ACM SIGGRAPH 2000 (2000),

pp. 335–342.

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: a mul-

tiresolution point rendering system for large meshes. In

Proceedings of ACM SIGGRAPH 2000 (2000), pp. 343–

352.

[SABS94] SALISBURY M. P., ANDERSON S. E.,

BARZEL R., SALESIN D. H.: Interactive pen-and-ink il-

lustration. In Proceedings of ACM SIGGRAPH 94 (1994),

pp. 101–108.

[SB99] SOUSA M. C., BUCHANAN J. W.: Computer-

generated graphite pencil rendering of 3D polygonal mod-

els. Computer Graphics Forum 18, 3 (1999), 195–208.

[SPR∗94] STROTHOTTE T., PREIM B., RAAB A., SCHU-

MANN J., FORSEY D. R.: How to render frames and

influence people. In Computer Graphics Forum (13) 3

(1994), pp. 455–466.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible ren-

dering of 3-D shapes. In Proceedings of ACM SIGGRAPH

90 (1990), pp. 197–206.



H. Xu & N. Gossett & B. Chen / PointWorks

[SWHS97] SALISBURY M. P., WONG M. T., HUGHES

J. F., SALESIN D. H.: Orientable textures for image-

based pen-and-ink illustration. In Proceedings of ACM

SIGGRAPH 97 (1997), pp. 401–406.

[WS94] WINKENBACH G., SALESIN D. H.: Computer-

generated pen-and-ink illustration. In Proceedings of

ACM SIGGRAPH 94 (1994), pp. 91–100.

[WS96] WINKENBACH G., SALESIN D. H.: Rendering

parametric surfaces in pen and ink. In Proceedings of

ACM SIGGRAPH 96 (1996), pp. 469–476.

[XC04] XU H., CHEN B.: Stylized rendering of 3D

scanned real world environments. In Proceedings of the

3rd Annual Symposium on Non-Photorealistic Animation

and Rendering (2004). to appear.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS

M.: Pointshop 3D: an interactive system for point-based

surface editing. In Proceedings of ACM SIGGRAPH 2002

(2002), pp. 322–329.


