
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)
O. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

Illustrating Surfaces in Volume

Xiaoru Yuan and Baoquan Chen

Department of Computer Science and Engineering, University of Minnesota at Twin Cities
200 Union Street S.E., Minneapolis, MN 55455, USA

Email:{xyuan, baoquan}@cs.umn.edu

Abstract

This paper presents a novel framework for illustrating surfaces in a volume. Surfaces are illustrated by drawing
only feature lines, such as silhouettes, valleys, ridges, and surface hatching strokes, and are embedded in volume
renderings. This framework promises effective illustration of both surfaces and volumes without occluding or
cluttering each other. A two-step approach has been taken: the first step depicts surfaces; the second step performs
volume rendering, at the same time embedding surfaces from the first step.
We introduce Procedurally Perturbed Image Processing (PIP), a new method for enhancing both feature detection
and depiction of surfaces. We also present implementation strategies, especially those leveraging modern graphics
hardware, for delivering an interactive rendering system. Our implementation results have shown that this mixed
form of rendering improves volume visualization and is efficient.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Three-Dimensional
Graphics and RealismColor, Shading, and Texture; I.4.6 [Image Processing and Computer Vision]: Segmenta-
tionSegmentation Edge and feature detection;

1. Introduction

The complex nature of volume data imposes a challeng-
ing problem for effective visualization. Because of the data
complexity, features and structures have to be selectively
extracted and visualized. Surface-based volume renderings
have been developed to depict iso-valued surfaces or struc-
ture boundaries. In these methods, surface geometry can be
either explicitly extracted and represented in polygon mesh
[LC87] or implicitly defined by a transfer function [Lev88].
Surface-based volume rendering, however, provides limited
structure context because either only surface geometry is de-
picted (as in [LC87]) or the opaque surfaces occlude vol-
ume data behind them. Being able to depict both surfaces
and their surrounding volume structures (context) can signif-
icantly improve a viewer’s understanding of complex data.

There have been several methods developed to visual-
ize both surface geometry and volume. One such method is
to make surface geometry transparent. Embedding transpar-
ent polygonal surfaces in a volume has been researched by
Kreeger and Kaufman [KK99]. There, polygons are drawn
with transparency, revealing surrounding structures. While

this offers the best possibility for enabling an integrated
visualization of both surfaces and volumes, the full three-
dimensional shape of a transparent surface can often be dif-
ficult to perceive, let alone when the rendering is mixed with
a volume. The situation is worsened when multiple surfaces
are to be depicted and mixed with volume rendering. In an-
other representative method, Interrante [IFP95] used strokes
on a transparent surface help enhance the surface shape.

In this paper, we develop a framework for effectively vi-
sualizing multiple surfaces and mixing them with the vol-
ume. To clearly convey surface shape and at the same time
avoid obstructing volume illustration, surfaces are depicted
through strokes representing only geometric features. As
shown by various stroke-based non-photorealistic rendering
(NPR) methods, strokes can provide more effective shape
illustration by emphasizing important geometric features
without cluttering them with small or unimportant ones.
We then embed these strokes into volume rendering, which
provides structure context. Figure 1 illustrates images gen-
erated through our methods. Comprehensive visualization
(Figure 1(d) and (e)) can be achieved by appropriately mix-

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

(a) (b) (c) (d) (e)

Figure 1: A CT scan of engine rendered by various methods: (a) conventional volume rendering, (b) iso-surface with NPR
illustration, (c) another iso-surface with NPR illustration, (d) mixture of iso-surfaces in (b) and (c) with volume rendering (a),
(e) similar image as (d) with iso-surface illustration enhanced by PIP to emulate felt-tip pen drawing style.

ing iso-surfaces rendered in NPR styles with directly ren-
dered volume. While NPR-generated surfaces highlight ge-
ometric structures such as silhouettes, creases, and valleys,
volume rendering provides context structures surrounding
the depicted surfaces. Our new framework features a two-
step approach: the first step renders surfaces, and the second
step renders volume and mixes it with surface strokes. Since
the surfaces and volumes are rendered separately, this ap-
proach can bring together advances in each rendering task.

For the first step of surface stroke generation, several
choices are possible. Interrante pre-generated evenly dis-
tributed strokes through 3D Line Integral Convolution (LIC)
in a volume guided by principal curvature direction [Int97]
and stored them in a separate texture volume. Stroke-based
surface illustration was then generated through volume ren-
dering with texture mapping, which can be expensive since
it involves full volume rendering. Here, in contrast, we re-
sort to surface-based NPR methods to generate the required
stroke-based surface illustration and separate this from vol-
ume rendering to gain flexibility. A straightforward approach
would require that a surface geometry be explicitly con-
structed before existing surface-based NPR methods can be
applied; this is especially true for object-space methods that
rely on polygon connectivity information to extract geomet-
ric features and view-dependent silhouettes (e.g., [IFH∗03]).
To accelerate this process, we instead detect surface features
in image space, performing image processing, such as edge
detection, on a geometric buffer (G-buffer) [ST90]. Here any
general surface extraction and rendering method can be ap-
plied; then a G-buffer is generated through efficient render-
ing.

For the second step of volume rendering, any existing
method can be employed. The key issue is the mixing of
volume with surface illustrations. Since surface strokes are
usually sparse, we set them to be fully opaque. These strokes
occlude only limited volume structures, and hence the repre-
sentation will not lose overall data context. Mixing opaque
strokes with the volume can be efficiently performed through
depth testing.

We enhance the feature detection by introducing a novel
method we term Procedurally Perturbed Image Processing
(PIP), in which the size and sampling positions of the im-
age filter kernel are modified by a procedural perturbation
function (hence the name) to impose artistic stylization on
the output features. Moreover, in our algorithm and imple-
mentation design, we extensively leverage modern graphics
hardware by implementing as many operations as possible
using vertex and fragment hardware shaders. With this hard-
ware support, multiple layers of surfaces can be interactively
rendered and mixed with the volume.

In the rest of this paper, we will first review some recent
developments in NPR volume rendering (Section 2), fol-
lowed by an overview of our framework (Section 3). Then
we discuss the two rendering steps, surface illustration and
volume rendering and mixing in Section 4 and Section 5, re-
spectively. In Section 6 we will discuss in more detail the
Procedural Image Processing (PIP) introduced specifically
for surface feature extraction and illustration. Results are
demonstrated and discussed in Section 7, and finally con-
cluding remarks are given in Section 8.

2. Related Work

Enhancing volume features in volumetric data visualization
has recently become an area of active research. Critical to
the success of a volume visualization is the technique for
emphasizing important features and avoiding as much vi-
sual clutter and distraction as possible. Interrante enhanced
transparent surface shape and position using sparse textured
ridge and valley lines [IFP95]. Both ridge and valley lines
correspond to geometric features of the surface measured
on local surface geometry (e.g., normals, curvatures), which
are further calculated from local volumes. Rheingans intro-
duced an illustration approach [RE01] in which various vi-
sual cues, such as object boundaries, silhouettes, and halos,
are evaluated and enhanced within the volume visualization
pipeline by modulating the corresponding voxel’s color and
opacity. As in most other volume rendering enhancement
methods [CMH∗01, LME∗02], the visual cues or features

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

are evaluated based on local volume characteristics (e.g.,
gradients). Various NPR styles have been generated, such
as pen-and-ink style [TC00] and stippling [LME∗02]. Dong
et al.[DCLK03] developed a pen-and-ink volume hatching
method for surfaces in which strokes are generated by 2D
processing of projected surface voxels.

Using only one method of representation and visu-
alization is sometimes insufficient to convey all rele-
vant feature information. Accordingly, some researchers
have developed hybrid rendering methods. Hauser et al.
[HMBG01, HBH03] developed a two-level volume render-
ing approach that allows selective use of different render-
ing techniques for different segments of data. Zhou et al.
[ZHT02] applied traditional photorealistic volume render-
ing to the focal volume region, but otherwise conducted
NPR rendering. Lum and Ma presented a method combin-
ing several perceptually effective NPR techniques such as
tone shading, silhouette illustration, and depth-based color
cues in one single volume rendering [LM02]. Different vi-
sual cues are generated through separate evaluations and are
blended together.

All the above methods perform feature extraction and vi-
sualization through volume-based processing. To obtain any
individual feature, a separate pass of volume operation has to
be performed, which can be very computation intensive. For
example, in [LM02], multiple graphics cards spread across
a PC cluster have been used to parallelize NPR volume ren-
dering so as to obtain interactive rendering speed. Because
our goal here is to highlight features on surfaces, our fea-
ture extraction is achieved through a more efficient method
of surface rendering, producing a surface illustration that can
also be efficiently mixed with volume rendering. Since our
method employs image-space feature detection, the detected
features are view-dependent, while existing methods usu-
ally generate view-independent features since they are cal-
culated in volume space. Nevertheless, it is worth noting that
many existing volume illustration methods can be employed
to complement our method in providing improved volume
visualization.

3. System Overview

Our rendering system takes a two-step approach. The first
step generates a surface illustration, while the second step
performs direct volume rendering and mixes this with sur-
face illustration. As illustrated in Figure 2, the complete sys-
tem pipeline consists of five major operations: surface ex-
traction, surface rendering, surface feature detection, surface
hatching (optional), and volume rendering and mixing (i.e.,
embedding surface illustration). The first four of these oper-
ations belong to the first step of surface illustration and can
be repeated based on the number of surfaces defined. An ex-
planation of each of these operations follows.

• Surface extraction: The first operation extracts surfaces

from input volume data. Surfaces can be defined based
on iso-values or segmented object boundaries. Since sur-
face features will be extracted through image-based ap-
proaches, which do not rely on polygon connectivity, a
point set is extracted for surface representation and ren-
dering.

• Surface geometry rendering:The second operation ren-
ders point geometry and generates a geometric buffer (G-
buffer) to allow image-based feature detection. The G-
buffer includes one or multiple geometric properties such
as depth, gradient of isovalue, and/or dot product of gra-
dient and viewing direction [NXYC03]. Points are effi-
ciently rendered by vertex programs.

• Surface feature detection:The third operation is to de-
tect and illustrate features by applying various image-
detection filters to the G-buffer. Various geometric fea-
tures, such as silhouettes, ridges, and valleys, can be gen-
erated through image filtering and thresholding. We apply
hardware-accelerated PIP to detect and stylize geometric
features. (PIP will be discussed in more detail in Section
6.) The image filtering operations are performed by frag-
ment programs. If more than one surface is rendered, each
surface is rendered and feature-detected separately. The
detection results are combined.

• Surface hatching: The optional fourth operation con-
ducts hatching on surfaces for better conveying surface
shapes. To achieve this, a subset of surface points is se-
lected and hatching strokes are positioned at these points.
With encoded 3D geometry information, strokes are ori-
ented and drawn in various styles.

• Volume rendering and mixing: The last operation per-
forms volume rendering and mixes it with surface illus-
tration. We have developed strategies for performing this
operation efficiently without altering the existing volume
rendering pipeline.

4. Surface Illustration

This section explains the operations outlined above for illus-
trating surfaces extracted from volume.

4.1. Isosurface Extraction

Any isosurface extraction method can be applied in our
framework. Here instead of resorting to conventional surface
extraction methods [LC87] and generating polygon meshes,
we extract a point-based surface model instead. Point-based
representation can be more efficiently constructed and ren-
dered than polygon meshes [CHJ03]. Here we directly ex-
tract the vertices of corresponding polygon meshes. An iso-
point and its attributes are linearly interpolated from two ad-
jacent voxels. Then an oriented ellipse (splat) is defined at
that point position. Splats lie on the isosurface and overlap
with adjacent ones without leaving holes in between. The
extraction time depends on the dataset and number of iso-
points. For example, it requires 0.17s for Engine(267K iso-

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

Point based surface extraction from

volume data.

Rendering of point based surfaces by

hardware accelerated splatting.

Geometric information is encoded in

color channels.

Silhouettes and strong geometric

features detected and stylized by

Procedural Image Processing filters.

Surface illustration enhanced by

rendering hatching strokes.

Surface illustration mixed with volume

rendering.

Figure 2: Overview of rendering pipeline.

points), 8.4ms for Neghip(17K isopoints). It is worth noting
that methods for speeding polygon-based isosurface extrac-
tion can also be applied to accelerate point-based isosurface
extraction.

4.2. Hardware Accelerated Surface Rendering

The objective of this operation is to generate a G-buffer for
feature detection. Here we generate geometric information
such as normal position and/or the dot product of the gra-
dient and view vector for later image-based feature extrac-
tion. The gradient can also be used for directing surface ori-
entation during surface hatching. To generate a smooth in-
terpolation of geometric properties between adjacent points,
we employ the method developed by [RPZ02], in which a
point splat is rendered as a rectangle texture-mapped with a
Gaussian alpha texture. Using this method, the surface ren-
dering quality is satisfied even for small dataset. For large
ones with more iso-points, using point sprites will greatly
accelerate surface rendering while maintain adequate qual-
ity. Various G-buffers, such as depth, dot product of surface
normal and view vector, can be generated at this stage. We
mostly use dot product of normal and view direction since
this information shows large variation in the high curvature
place [NXYC03].

4.3. Image-Based Surface Feature Extraction

Features are detected by applying image filters
[ST90, ND03], such as a Sobel filter for edge detec-
tion. The filtered result is then passed through a threshold
test to classify the features. This feature detection operation
is implemented in a fragment shader. More implementation
details about image-based surface feature extraction can be
find in [NXYC03].

To gain more control over detected features, such as the
width and style, we have developed PIP, which can con-
trol the width and ’style’ of the extracted features by pro-
cedurally modifying a basic filter(Section 6). Perturbation
function can be either defined by analytical functions or en-
coded in textures. Users are able to load different textures
and change parameters interactively to obtain different styl-
izations of the produced features.

4.4. Surface Hatching

The features detected by the procedures described above are
geometric features such as silhouettes, ridges, and valleys.
To further convey surface shape, we place strokes inside the
surface boundaries to illustrate surface geometry and/or illu-
mination. Figure 3(b) shows the depicted shapes by render-
ing evenly distributed strokes on the edge image Figure 3(a).

We use a subset of surface points to specify where strokes
are placed; therefore, changing the size of this point set
automatically changes stroke density. Using surface points
to control strokes can also facilitate animation coherence
[Mei96]. We offer two levels of control on stroke density: a
global control and a local control. The global stroke density
is controlled by a screen space density factord, defining the
number of strokes at a unit screen area. As pre-processing,
we first randomly order the entire isosurface point list. At
the run time, an object’s screen projection size is estimated.
This estimated area is multiplied with the density factor to
obtain the number of strokes to be depicted,n. Then the first
n number of points from the pre-generated surface point list
are retrieved and projected to screen for determining stroke
locations. A Similar operation is described in more details
in [XC04].

Stroke density is also controlled by illumination. To
achieve this effect, all isopoints are pre-assigned a random
number; during the run time, a value is calculated for each
point and compared against the assigned random number.
If the test is successful, the point remains; otherwise, it is
discarded. This value can either be geometric curvature or
illumination value at the point. When illumination value is
used, the stroke density will illustrate the shading tone, as
can be seen in Figure 3(c).

The stroke orientation is guided by the geometry curva-
ture at the point [IFP95]. Once the stroke position and ori-
entation are known, a stroke is generated by drawing a tex-
tured quadrilateral primitive, similar to what is done in the

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

(a) (b) (c)

Figure 3: Surface illustration: (a) profiles only (filter-detected features), (b) with surface hatching, (b) with surface hatching
and lighting effects.

previous operation of point-based surface rendering. Various
stroke styles can be defined in the texture. The stroke visibil-
ity is simply determined by depth test (the depth buffer has
been generated at the surface rendering stage).

4.5. Multi-Surface Rendering

When multiple surfaces are specified, each surface is ren-
dered separately and combined with others before volume
rendering is performed. For each surface, its stroke illus-
tration image and corresponding depth image are stored in
textures. After all surfaces have been processed, the corre-
sponding texture images are read and drawn to screen, how-
ever, all empty pixels are made transparent. Some operations
are performed to achieve correct surface combination. First,
at each surface rendering, the rendered image is stored into
texture memory (achieved by a fragment program), and then
the surface image (now texture) is rendered back into the
frame-buffer (by texturing a window-sized rectangle). The
fragment program evaluates whether a pixel belongs to a sur-
face stroke; if so, the corresponding depth value is then writ-
ten to the depth buffer. During this process, depth testing is
enabled to ensure correct visibility. Since only strokes are
rendered back to frame-buffer, surfaces between strokes will
not occlude any strokes so that multiple surface layers can be
simultaneously visible. Figure 4(a) shows three iso-surfaces
illustrated and combined together. Figure 4(b) shows the sur-
faces mixed with volume.

5. Volume Rendering and Mixing with Surfaces

Volume rendering is implemented using hardware acceler-
ated 3D texture rendering [RSEB∗00]. Parallel polygons
perpendicular to the viewing directions are generated and
texture mapped with the volume and are composited together
in back-to-front order. To mix surfaces with volume, simply
compositing the image of surface rendering with that of vol-
ume rendering will not convey the correct depth variations
of individual surface strokes. Our approach is to initialize
appropriate depth buffer and enable depth testing before vol-
ume rendering. The depth initialization is performed by set-
ting only depth values of feature or stroke pixels, which is

(a) (b)

Figure 4: (a) Three isosurfaces (encoded by red, green, and
blue colors in electronic version); (b) mixture of surfaces and
volume.

(a) (b)

Figure 5: Setting different global alphaρ for volume to ad-
just the visibility of embedded surfaces: (a)ρ = 0.25, (b)ρ =
0.50.

done in multi-surface rendering. During volume rendering,
no voxels behind surface strokes contribute to the final im-
age. Voxels in front of strokes will contribute to the final
pixels.

When illustrating a surface structure inside a volume, the
rendered 3D volume could be too opaque to hide the surface
inside. We set a transparency factorρ to globally modulate
voxels’ alpha values. Tuning the the entire volume’s trans-
parency can achieve a different visibility of the surface il-
lustration. Figure 5 demonstrates this operation by showing
images generated using differentρ values.

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

(a) (b)

Figure 6: Silhouette width variation controlled by different
constant perturbation functions: (a)P(x,y) = 1.0pixel, (b)
P(x,y) = 2.0pixels.

6. Procedural Perturbed Image Processing (PIP)

In this section, we provide more details about the PIP. First,
let us formulate a regular image filter operation. Let the input
imageF be a pixel arrayf (x,y); W denotes am× n filter
kernel applied to the input image and the output imageG
has a pixel arrayg(x,y). The output image can be computed
by the expression:

g(x,y) = F
⊗

W =
s=a

∑
s=−a

t=b

∑
t=−b

w(s, t) f (x+s,y+ t), (1)

wherea= (m−1)/2 andb= (n−1)/2. For PIP filtering,
a procedural functionP(x,y) is applied to perturb the filter’s
sampling positions:

g′(x,y) =
s=a

∑
s=−a

t=b

∑
t=−b

w(s, t) f (x+sP(x,y),y+ tP(x,y)) (2)

Let us draw some intuition here. IfP(x,y) = 1, the filter
becomes a regular filter. IfP(x,y) = 0, Equation 2 returns
the center pixel multiplied by the sum of filter weights. In
the case of edge detection filter, the sum of filter weights is
zero so no edge is detected. When the perturbationP(x,y) in-
creases, pixels further away from the filtering center will be
sampled, therefore, slow edge may get amplified (widened).

Some examples of PIP filters and their results are shown in
Figure 6 and 7. In Figure 6(a) and Figure 6 (b), a Sobel filter
(3x3 kernel) is perturbed by constant functionP(x,y) = 1.0
andP(x,y) = 2.0, respectively. The large perturbation factor
produces thicker edges. In fact, both regular and random per-
turbation pattern (or function) can be defined. The perturba-
tion patterns can be either defined by an analytical function
or pre-generated and stored in an array (image). The latter
allows generating more complex and random perturbation
patterns. When a perturbation texture is used, it is usually
smaller than the image to be filtered; when this is the case,
it is usually tiled to cover the entire image. Figure 7 shows
results by applying different PIP perturbation textures. The
appearances of the detected feature edges are altered. In Fig-
ure 7(a), a regular ‘dot’ matrix texture is used. Smaller tex-
ture values (darker texels) reduce the chance of edge being
detected. When the ‘dot’ size is smaller than the underlying
edge width, this produces an effect that edges are being stip-
pled or halftoned. On the other hand, when the ‘dot’ size is

increased to be larger than the edge width, the edge can be
either thickened or thinned, simulating felt-tip pen drawing
style. This is illustrated in Figure 7(c). In Figure 7(b) the
perturbation function texture is a Perlin’s noise texture with
small scale random patterns. Compared with Figure 7(a), the
resulting image appears similarly stippled, but the edges ap-
pear more random. In Figure 7(d), an irregular ’dot’ texture
with larger scale patterns is used; the resulting image shows
that detected edges are randomly distributed dots.

The current programable graphics hardware allow above
PIP operations be implemented directly in fragment pro-
grams. Since perturbation textures are applied to screen
space, it could lead to shower-door effect. However, the ef-
fect is not obvious probably due to that only edges or feature
lines are illustrated and no large area pattern is involved. We
have to point out that the net behavior of the PIP filter de-
pends also on the underlying image content. The goal of the
perturbation function design is to make resulted feature illus-
tration appear random on small scales while conform with
large scale stylization. This may also make the shower-door
artifacts less severe.

7. Results and Discussions

All experiments have been performed on a Dell Preci-
sion 530 workstation with single Intel Xeon 2.20G Hz
CPU, 1GB RAM, 4×AGP motherboard and a 256MB
GeForce FX5900 Ultra graphics card. All images are gen-
erated at a screen resolution of512× 512 pixels. We uti-
lize the Cg language [MGAK03] for vertex/fragment hard-
ware programming. NV_vertex_program2 (vp30 profile)
and NV_fragment_program (fp30 profile) OpenGL exten-
sions are used in our implementation.

First, we demonstrate rendering performance. Figure 8
shows the averaged rendering times (ms) for some data sets.
The surface rendering time includes surface splatting, edge
detection, and surface hatching. As illustrated in the figure,
for a medium sized data set of2563, a frame rate of around
3∼ 5 fps has been achieved. The volume rendering step is
relatively fast and takes less amount of time as surface ren-
dering. This is because volume rendering here performs nei-
ther advanced shading nor a complex feature enhancement
operation; instead, merely color lookup, diffuse shading and
compositing are conducted.

Next, we demonstrate visualization effects created by our
system. Figure 9 and 10 show mixed rendering of sur-
faces and volume of several volumes, including both sim-
ulated volume data, such as silicium, protein and a Bucky
ball, and medical volume data set, such as CT scans of
a hand, cranium, chest, and foot. For all these examples,
one or multiple surfaces are illustrated and are embed-
ded in conventional volume rendering. Surface hatching is
also performed in Figure 9. Since surfaces are depicted us-
ing strokes, multiple surfaces are visible without occluding

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

(a) (b) (c) (d)

Figure 7: A variety of stylization achieved by applying different perturbation patterns (top-left small texture images): (a) small
‘dot’ pattern, (b) Perlin’s noise, (c) large ‘dot’ pattern, (d) irregular ’dot’ pattern.

T0(ms) T1(ms) T2(ms) Np

Neghip 56.6 51.1 5.5 19.8K
C60 133.05 117.5 15.5 79.8K

Engine 142.6 99.1 43.5 71.0K
Chest 343.4 297.6 45.8 239K

Figure 8: Averaged rendering time for different volume data
(Neghip(643), C60(1283), Engine(2562128)), Chest(2563).
T0 is the total rendering time for each frame.T1 is the surface
rendering time,T2 is the volume rendering time.Np repre-
sents the number of isosurface points used.

each other. The stroke illustrated surfaces also allow maxi-
mum visibility of the enclosing volume, especially between
strokes. Instead of superimposition of hatching surface on
top of volumes [NSW02], Different color attenuation on sur-
face strokes also provides depth cues of the strokes, and thus
help viewers better comprehend the surface shape.

8. Conclusions and Future Work

We have introduced a framework for rendering multi-layered
surfaces and their mixing with volume. In this framework,
surfaces are illustrated using strokes highlighting their geo-
metric features. The stroke-based illustration is then embed-
ded in the corresponding volume. This hybrid illustration
provides an opportunity to highlight surface features with-
out losing their volumetric context information. Hadwiger’s
two level volume rendering [HBH03] is complementary to
our work. We have also discussed implementation strategies,
especially those leveraging modern graphics hardware for
achieving interactive visualization and manipulation. Facil-
itated by a comprehensive GUI design and implementation,
various parameters, such as the number of surface, surface
values, PIP filters, lighting conditions, stroke textures, and
transfer function for volumes, can be changed interactively.
The functionalities and interactivity offered by our system
can substantially enhance a data exploration experience.

There is room for improvement in our system. First, tem-
poral aliasing can be present due to image-based iso-surface

feature detection. We plan to investigate mechanism to ad-
dress this issue. Next, we will seek to further investigate
PIP operation. This paper has shown some effective appli-
cations of PIP filters. More principles need to be developed
for guiding the design of PIP and realizing its full potential
in visualization and stylization. Finally, we intend to inte-
grate other volume illustration methods into our system. Ex-
isting non-photorealistic volume visualization methods can
complement our approach in providing more available tools
for further enriched volume illustration. As indicated in our
system introduction, this integration is feasible.

9. Acknowledgements

We would like to thank the anonymous reviewers for their
insightful comments and suggestions. This work was sup-
ported in part by NSF CAREER ACI-0238486 and by the
Army High Performance Computing Research Center under
the auspices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAD19-01-2-
0014. Its content does not necessarily reflect the position or
the policy of this agency, and no official endorsement should
be inferred. Other support has included a Computer Science
Department Start-Up Grant and Scholarship from the Office
of the Vice President for Research and the Dean of the Grad-
uate School, all from the University of Minnesota. Thanks to
Amit Shesh and Fang Ye for proofreading.

The CT-scanned chest, hand, cranium, and foot data are
downloaded from the web site of the Department of Radi-
ology, University of Iowa. The Bucky ball data set has been
created by Dr. Oliver Kreylos at the University of Califor-
nia, Davis. The Engine data is from General Electric. Neghip
and Silicium are VolVis distribution of SUNY Stony Brook.
Thanks to Michael Meissner for maintaining the volume data
repository and providing downloads.

References

[CHJ03] CO C. S., HAMANN B., JOY K. I.: Iso-
splatting: A point-based alternative to isosur-

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

face visualization. Proc. of Pacific Graphics
2003(2003), 325–334.

[CMH∗01] CSÉBFALVI B., MROZ L., HAUSER H.,
KÖNIG A., GRÖLLER E.: Fast visualization
of object contours by non-photorealistic vol-
ume rendering.Computer Graphics Forum 20,
3 (2001), 452–460.

[DCLK03] DONG F., CLAPWORTHY G. J., LIN H.,
KROKOS M. A.: Nonphotorealistic render-
ing of medical volume data.IEEE Computer
Graphics and Application 23, 4 (2003), 44–52.

[HBH03] HADWIGER M., BERGER C., HAUSER H.:
High quality two-level volume rendering of
segmented data sets on consumer graphics
hardware. Proc. of IEEE Visualization ’03
(2003), 301–308.

[HMBG01] HAUSER H., MROZ L., BISCHI G. I.,
GRÖLLER M. E.: Two-level volume render-
ing. IEEE Transactions on Visualization and
Computer Graphics 7, 3 (2001), 242–252.

[IFH∗03] ISENBERG T., FREUDENBERG B., HALPER

N., SCHLECHTWEG S., STROTHOTTE T.: A
developer’s guide to silhouette algorithms for
polygonal models.IEEE Computer Graphics
and Applications 23, 4 (2003), 28–37.

[IFP95] INTERRANTE V., FUCHS H., PIZER S.: En-
hancing transparent skin surfaces with ridge
and valley lines. Proc. of IEEE Visualization
’95 (1995), 52–59.

[Int97] INTERRANTE V.: Illustrating surface shape in
volume data via principal direction-driven 3d
line integral convolution.Computer Graphics,
Annual Conference Series(1997), 109–116.

[KK99] KREEGERK., KAUFMAN A.: Mixing translu-
cent polygons with volumes.Proc. of IEEE Vi-
sualization ’99(1999), 24–29.

[LC87] LORENSEN W. E., CLINE H. E.: March-
ing cubes: A high resolution 3-d surface con-
struction algorithm.Computer Graphics (SIG-
GRAPH ’87) 21(1987), 163–169.

[Lev88] LEVOY M.: Display of Surfaces from Volume
Data. IEEE Computer Graphics and Applica-
tions 8(5)(May 1988), 29–37.

[LM02] LUM E. B., MA K.-L.: Hardware-accelerated
parallel non-photorealistic volume rendering.
NPRA ’02(2002), 67–74.

[LME∗02] LU A., MORRIS C. J., EBERT D. S., RHEIN-
GANS P., HANSEN C.: Non-photorealistic
volume rendering using stippling techniques.
Proc. of IEEE Visualization ’02(Oct. 2002),
211–218.

[Mei96] MEIER B. J.: Painterly rendering for anima-
tion. Computer Graphics (SIGGRAPH ’96)
(Aug. 1996), 477–484.

[MGAK03] MARK W. R., GLANVILLE R. S., AKE-
LEY K., K ILGARD M. J.: Cg: a system
for programming graphics hardware in a c-
like language. ACM Transactions on Graph-
ics(SIGGRAPH ’03) 22, 3 (2003), 896–907.

[ND03] NIENHAUS M., DOELLNER J.: Edge-
enhancement – an algorithm for real-time non-
photorealistic rendering.WSCG ’03(2003),
346–353.

[NSW02] NAGY Z., SCHNEIDER J., WESTERMANN

R.: Interactive volume illustration.Proc. of
VMV ’02: Vision, Modeling, and Visualization
(2002).

[NXYC03] NGUYEN M. X., X U H., YUAN X., CHEN

B.: Inspire: An interactive image assited non-
photorealistic rendering system.Proc. of Pa-
cific Graphics 2003(2003), 372–376.

[RE01] RHEINGANS P., EBERT D.: Volume illus-
tration: Nonphotorealistic rendering of volume
models. InIEEE Transactions on Visualiza-
tion and Computer Graphics(2001), vol. 7(3),
IEEE Computer Society, pp. 253–264.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object
space ewa surface splatting: A hardware accel-
erated approach to high quality point rendering.
Computer Graphics Forum(2002), 461–470.

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER

M., GREINER G., ERTL T.: Interac-
tive volume rendering on standard pc graph-
ics hardware using multi-textures and multi-
stage-rasterization. Proc. of Eurograph-
ics/SIGGRAPH Workshop on Graphics Hard-
ware ’00(2000), 109–118,147.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible
rendering of 3-D shapes.Computer Graphics
24, 4 (1990), 197–206.

[TC00] TREAVETT S., CHEN M.: Pen-and-ink render-
ing in volume visualisation.Proc. of IEEE Vi-
sualization ’00(July 2000), 203–210.

[XC04] XU H., CHEN B.: Stylized rendering of 3d
scanned real world environments.Proc. of
NPAR ’04(2004).

[ZHT02] ZHOU J., HINZ M., TÖNNIES K. D.: Focal
region-guided feature-based volume rendering.
Proc. of the 1st 3DPVT(2002), 87–90.

c© The Eurographics Association 2004.

Xiaoru Yuan & Baoquan Chen / Illustrating Surfaces in Volume

(a) (b) (c)
Figure 9: Surface-volume illustration of simulation data: (a) Silicium grid (128× 64× 64), (b) Neghip, (c)Bucky ball(C60).
Surface hatching is performed on all the illustrated surfaces except the outer layer surface in (b). Higher stroke density and
shorter stroke lenghth are used in (a) compared with (b) and (c). Lighting effect is also enabled in (c).

(a) (b) (c)

(d) (e) (f)
Figure 10: Surface-volume illustration of medical data: (a) NPR surface illustration of a CT scanned hand, (b) mixture of
the surfaces in (a) and the corresponding volume, (c) mixture of surfaces and the foot volume, (d) NPR surface illustration of
cranium, (e) mixture of the surfaces in (d) and the corresponding volume, (f) mixture of surfaces and the chest volume.

c© The Eurographics Association 2004.

